
AD-Al 0 DENELCOR INC DENVER CO /92
MULTIPLE-INSTRUCTION, MULTIPLE-OATA PATH COMPUTERS' PARALLEL PR--ETC(U)

AUG al R E LORD, S KUMAR, R A SCHMIDT F33615-79-C-0009
UNCLASSIFIED AFHRL-TR-80-64 NL

.EEEEEEII//E/IE/E//EEEEEEEEI
IEEEEEEEEEIIIE
llullllumllllu
EEEIIIIEIIIEEE
IEEEEEEEEEEEEE
/I///EI//EEEEE

AFiIRL-°H-80-b I j l 7'1

AIR FORCE Va
H II .1'IPLE-INSTIItc(r'ION. MILTIPLE-I)ATA

PATH_ (C()MPUTERS:HP.ARAdL~LEL PR()CESSIN(C IMPA..CT OiN

U FLIIT' SDII LATION SoI "'TARE

M B%A Robert E. Lord
41,ahlingztoin Slawe nke'r~it%

}{~otlnte-, A. Schmnidt

NIDentlh'or. lite.,
"11135 Ida.f $01h A% ,-iue
Dmr.Colorado 81020i5

R ()OPERAIONS TRAINING; DIVISION

R Williams Air Force Base. Arizona 8522t

August 1981
Final Report i -

0
U

..jE S LABORATORY

AIR FORCE SYSTEMS COMMAND
4IRP I5 AIR FORCE BASE,TEXAS 7823581 9

NOTI(:i*

When (;overnment drawings. specifications, or other data are used for an.% pirpos.e other than
in connectlon with a defiiiitel% Governumeni-relahed proctrenel. lie 1, liled State.
Government incurs no respoo ihilit% or avii obligation whaisov.vr. Th fat that tine

;overn .it ina hav formulat ed or iji any AaN upplied tIi, said drauing,. sji.,ifi.alit (Jr
other data. i- n1ot Ito be regarded b-, imipli.alion, or otlierwi.e in aii luann er c'on.lrhled. a-
litening the holder, or ani other per!on or corporation: or a- on~v.ing an.i righi or
perini-ion to manufactLure. use4. or -ell an% patented imenlion t hat ina% in ami %%a% le related

t hereto.

The Public Affairs Office has reviewed this report. and it is releasable to the National
Technical Information Service. where it will be available to the general public, including
foreign nationals.

This report has been reviewed and is approved for publication.

TERRXNCE K. TEMPLETON

;onitral Monitor

MILTON E. WOO). Technical l)irector

Operations Training l)ivision

RON.AlI.) W. TERRY. Colonel. ISAI-
Commander

PREFACE

The purpose of this study was to develop a technique to optimize software for execution on a
Multiple-Instruction Multiple-Data Path (MIMD) computer and test its efficiency on existing flight
simulator programs. This effort was performed in support of the Air Force Human Resources
Laboratory's work on Advanced Simulator Concepts. which is, in turn, part of a larger effort (or
thrust) entitled "'Engagement Simulation Technology."

The work was accomplished by Denelcor. Inc., Denver, Colorado. and Washington State
University (WSU) under Project 6114 sponsored by the Air Force Human Resources Laboratory.
Operations Training Division, Williams Air Force Base, under contract F33615-79-C-(K9.

The principal investigators and authors are Dr. Robert E. Lord of WSU. Ms. Swam Kumar of
WSU. and Dr. Rodney A. Schmidt of Denelcor. Inc. Patrick E. Price was the Air Force project
engineer throughout most of this project: however, during the final stages. he was succeeded by
Terrance K. Templeton.

-i -

NOT'ICE

%Niihen ;o eroinient drawinigs. specifications. or otlier data are us~ed for ally, puirpose othier thaau

in com iectilo wIith a defi1nitely, ;ujver ment - rela ted pro-ti remie li. (he t ited Sta te

Gov em men ioiors no respovisibhi t' or anyi oligat ion whlats.oever. The fact thiat lhe
(;overnmemiui ma', have formuilated or ini an', way sitipplied the said drawiig. -.prvificatiomi.. or

othIer dat a. is not to be regarded by imlo1 icatIion. or (otherw ise in an', mialnner coniie d. a

licemiitig the holder. or am of(t ier p~erson or corporation: or as couivel ing am. rights or

pvrmioi i to iiiannfauctaore. us~e. or sellI an pi ateniited in lenli ith Iat ina, in an,. wa be relateid
t hereto.

The Ptiblic A~ffairs Office- lias reviewed I liik report. anid it is releasable ito thle National
Technical liitormat ion Service. where it will lbe available to1 the gelieral ptib1li iniltidiiig

foreign mnationllas.

Tis report hias beeni rei iuwed an iis a pproveid for 1111111cationl.

TERR %NCE K. TrEMPLETON
Conitrait Monitorb

mILTON F . vxmHhi. Techonical D irector
Operations Trai iiintg IDivisiciii

RON.ALD m 'rERRY. Colonll. tSAi
Comma1 ntder

TABLE OF CONTENTS

SECTION 1 : INTRODUCTION..................................... 3

Computer Architecture....................................... 3
Tasks... 4
Synchronization.. 8
Switch.. 8
FORTRAN Extentions....................................... 9

Problem Selection.. 10

SECTION 2: PARALLELISM AT THE MACHINE INSTRUCTION LEVEL..13

Elementary Functions....................................... 13
Evaluating Polynomials.................................. 13
Specific Examples....................................... 18

Cosine.. 18
Logarithm.. 23

General Code Sequences..................................... 28
Tree Height Reduction Techniques........................ 29
Specific Examples....................................... 33

SECTION 3: PARALLELISM AT THE TASK LEVEL 37

Task Systems... 37
Scheduling... 41

Standard Task Systems................................... 41
Cyclic Task Systems..................................... 43

Synchronization.. 47
Automated Techniques....................................... 52
Results... 57

SECTION 4: REORGANIZATION 64

Parallel Techniques for Ordinary Differential Equations...64
General Methods .. 64

Interpolation Method 65
Runge Kutta (RK) Methods 66
Predictor-Corrector Methods 69
Block Implicit Methods 72

Results .. 74
Mathematical Functions 76

Shortest Path Problem 77
Linear Equation Solver 81

SECTION 5: CONCLUSIONS 91

REFERENCES .. 95

-2-

SECTION 1: INTRODUCTION

Real-time flight training simulators generally use

several single-instruction single-data path (SISD) computers
to attain the required processing capability. This is

similar to the capability offered on a smaller scale by a
multiple-instruction multiple-data path (MIMD) computer.
Until recently, however, a practical functioning MIMD com-

puter had not been implemented -- all predictions of

increased speed and fidelity with MIMD architecture were
purely theoretical. Even though an operating MIMD computer
now exists, there are still problems obtaining the maximum
efficiency from the software. Because the trend is toward
more parallel computer processing and parallel processing
configurations, the Air Force sponsored this study to

develop the technology needed to take advantage of the
benefits offered by MIMD architecture. The purposes of this

study were to determine which software techniques are most
practical to implement, and to determine the implications of

using an MIMD computer in real-time simulation.

Computer Architecture

The machine used in the study was Denelcor, Inc.'s
Heterogeneous Element Processor (HEP). HEP is an MIMD

machine of the shared resource type as defined by Flynn I .
In this type of organization, skeleton processors compete

for execution resources in either space or time. For
example, the set of peripheral processors of the CDC 6600
may be viewed as an MIMD machine implemented by the time-
multiplexing of ten process states to one functional unit.

1M. J. Flynn. "Very High Speed Computing Systems".
Proceedings IEEE, 54 (1966), pp. 1901-1909.

-3-

In a HEP processor, two queues time-multiplex the pro-
cess states. One queue provides input to a pipeline that
fetches a three-address instruction, decodes it, obtains the
two operands, and sends the information to one of several

pipelined function units that complete the operation. If
the operation is a data memory access, the process state
enters a second queue. This queue provides input to a pipe-
lined switch that interconnects several data memory modules

with several processors. When the memory access is com-
plete, the process state is returned to the first queue.

Figure 1 shows the processor organization, and Figure 2
shows the system layout.

Each HEP processor supports up to 128 processes, and

nominally begins executing a new instruction (on behalf of
some process) every 100 nanoseconds (ns). The time required

to complete an instruction is 800 ns. Thus if at least
eight independent processes (processes that do not share

data) are executing in one processor, the instruction execu-
tion rate is 107 instructions per second per processor.

HEP instructions and data words are 64 bits wide. The

floating-point format is sign magnitude with a hexadecimal,
seven-bit, excess-64 exponent. All function units, except
the divider, execute one instruction every 100 ns. The
divider can support this rate momentarily but is slower on

the average.

Tasks

Since HEP attains maximum speed when all of its pro-
cesses are independent, a simple set of protection mecha-

nisms is incorporated to allow potentially hostile users to
eyecute simultaneously. A domain cf protection in HEP is

called a task, and consists of a set of processes with the
same task identifier (TID) in their process states. The TID

specifies a task status word that contains base and limit

-4-

FROM DATA MEMORY TO DATA MEMORY
VIA SW4ITCH VIA SWITCH

OPERANDS PEMFORMESL

I NSTRUCTI1ON 4 UU

PROGRAM
MEMO RY

Figure 1 -Processor Organization

PROCESSOR ***POESSO R

PIPELINED 0 0

SWITCH

gO °

I /'-/

\' /

MEMORY MEMORY

Figure 2 - REP System Layout

-6-

addresses defining the regions within the various memories

accessible by the processes in that task. In this way, pro-

cesses within a task may cooperate but are prevented from

communicating with those in other tasks. Processes in dif-

ferent tasks or processors may communicate via data memory

if they have overlapping allocations there.

Processes are a scarce resource in HEP. In addition,

the synchronization primitives used in HEP make processes
difficult to virtualize. As a result, the maximum number of

processes a task uses must be specified to the system when

the task is loaded. The operating system insures that the

total allocation of processes to tasks does not exceed the

number available. A create fault (too many processes) can

occur only when one or more tasks have created more pro-
cesses than they were allocated. In this event, the offend-

ing task or tasks (not necessarily the task that actually

caused the create fault) are removed from the processor.

Protection violations, create faults, and other error

conditions arising within a process cause traps. A trap is

the creation of a process executing in a supervisor task.

Sixteen tasks are available in each processor; eight are

user tasks and the other eight are corresponding supervisor

tasks. When a process causes a trap, the entire task is
made dormant to prevent further execution by any process in

it. A process is created in the corresponding supervisor

task to handle the condition. This scheme is not used for

create fault, however; a create fault suspends execution of
all processes, regardless of task, except those actually

handling the fault.

Create fault occurs before all processes have been
used. This allows any create instructions in progress to

complete normally, and allows for the creation of the create
fault handler process. All other traps in HEP are precise

in the sense that they prevent the execution of any subse-
quent instructions in the offending task.

-7-

Synchronization

Any register or data memory location in HEP can be used

to synchronize two processes in a producer-consumer fashion.

This requires three access states: a reserved state to pro-

vide for mutual exclusion, a full state, and an empty state.

When an instruction executes, it tests the states of loca-

tions and modifies them indivisibly. Typically an instruc-

tion tests its sources full and its destination empty. If a

test fails, the process reattempts the instruction on its

next turn for servicing. If all tests succeed, the process

executes the instruction and sets both sources empty and the

destination reserved. The operands from the sources are

sent to the function unit, and the program counter in the

process state is incremented. When the function unit

eventually writes a result in the destination, it sets the

destination full.

A destination may be tested full rather than empty, to

preserve the state of a source or to override the state of a

source or destination. A reserved state, however, may not

be overridden except by certain privileged instructions.

Input-output synchronization is handled naturally by

mapping I/O device registers into data memory address space

(an interrupt handler is just a process that is attempting

to read an input location or write an output location). I/O

device addresses are not relocated by the data memory base

address. All I/O-addressed operations are privileged.

Switch

The switch that interconnects processors and data
memories to allow memory sharing consists of a number of

nodes connected by ports. Each node has three ports and can

simultaneously send and receive a message on each port. The

-8-

messages contain the address of the recipient, the address

of the originator, the operation to be performed by the

recipient, and a priority. Each switch node receives a
message on each port every 100 ns. The node attempts to

retransmit each message on a port that reduces the distance
of that message from its recipient; for this purpose, each

node has a table that maps the recipient address into the
number of a port that reduces distance. If there is

conflict for a port, the node routes one message correctly
and the rest incorrectly. To help insure fairness, an

incorrectly routed message has its priority incremented as
it passes through the node. Preference is given in

conflicts to the message with the highest priority.

The success or failure of the operation (based on the
access state of the memory location) must be reported back

to the processor so it can decide whether to reattempt the
operation. Thus, the time required to complete a memory

operation via the switch includes two message transmission
times, one in each direction.

The propagation delay through a node and its associated
wiring is 50 ns. Since a message is distributed among two

or three nodes at any instant, the switch is two-colorable

to avoid conflicts between the beginning of one message and
the middle of another. When the switch fills up due to a

high conflict rate, misrouted messages begin to "leak".
Every originator is obliged to reinsert a leaking message

before inserting a new message. Special measures are taken

when the priority reaches its maximum value. This avoids

indefinite delays for such messages. A preferable scheme
would have been to establish priority by time of message

creation, but this would have required too many bits.

FORTRAN Extensions

Two extensions to FORTRAN allow parallelism in source
programs. First, subroutines may execute in parallel with

-9-

their callers, either by being CREATEd instead of CALLed or
by executing a RESUME before a RETURN. Second, variables

and arrays whose names begin with "$" may be used to
transmit data between two processes via the full-empty

discipline. A simple program to add the elements of an

array $A is shown in Figure 3. The subroutines INPUT and

OUTPUT perform obvious functions; the subroutine ADD adds
the elements. There are a total of 14 processes executing

as a result of running the program -- the main program
itself, the INPUT and OUTPUT subroutines and 11 copies of

ADD.

As a parallel computer, HEP has an advantage over SIMD
machines and more loosely coupled MIMD machines in solving
large systems of ordinary differential equations that simu-
late continuous systems. In this application, vector opera-
tions are difficult to apply because of the precedence con-
straints in the equations, and loosely coupled MIMD organiz-

ations are hard to use because a good partition of the pro-
blem to share workload and minimize communication is hard to
find. Scheduling becomes relatively easier as the number of
processes increases. It is quite simple with one process
per instruction as in a data flow architecture.

Problem Selection

The contractor principal investigator and the Air Force
contract monitor had a large number of programs and program
segments to examine and select. These included tens of
thousands of source lines provided by the Air Force contract

monitor, and several programs provided by the contractor
principal investigator. The contract monitor provided the
simulation system for the T-38B and A-10 aircrafts. These
programs are clearly most representative of current and

future simulation programs. A complete program, however,
was too large for the scope of this study. Futher, these
programs supported a "man in the loop" and had inputs and

- 10 -

C ADD UP THE ELEMENTS OF

C THE ARRAY $A

REAL $A(1000,$S(10),$SUM

INTEGER I

CREATE INPUT($A,1000)

DO 10 1=1,10

CREATE ADD($A(100*I-99),$S(I),100)

10 CONTINUE

CREATE ADD($S,$SUM,10)

CREATE OUTPUT($SUM,1)

END

C NOELTS ELEMENTS OF $V

C ARE ADDED AND PLACED IN SANS

SUBROUTINE SADD(SV,SANS,NOELTS)

REAL SV(1),SANS,TEMP

INTEGER J, NOELTS

TEMP=0.0

DO 20 J=I,NOELTS

TEMP=TEMP+$V(J)

20 CONTINUE

$ANS=TEMP

RETURN

END

Figure 3. HEP FORTRAN Example

- 11 -

outputs external to the computer. Thus, the T-38B and A-10
simulation programs provided interesting code segments for

analysis, but could not be executed on HEP. Four subrou-
tines, however -- constituting the solution of the flight

equations for the A-10 aircraft -- were selected for the
study. The same subroutines in the T-38B simulation used

more than 50% of all of the CPU cycles used by the total
simulation. Thus it was felt that the results gained from

studying these subroutines could be extrapolated to the
entire simulation.

To include a complete program whose serial and paral-

lel versions could be executed on HEP, the contractor
furnished a program that simulates the flight characteris-

tics of a ground-launched missile. This program is a
sequential FORTRAN program of 442 source lines that solves a

set of 10 nonlinear, first-order differential equations.

The code supplied by the Air Force contract monitor
included a library of mathematical functions that many of

the modules invoke. Thus, one elementary function and two
mathematical functions were also included in the study.

- 12 -

SECTION 2: PARALLELISM AT THE MACHINE INSTRUCTION LEVEL

Elementary Functions

A significant computational task in any scientific
computing activity is approximating elementary functions

(SIN, LOG, SQRT, etc.). The extensive mathematical library
in the listings supplied by the Air Force contract monitor
indicates that this is the case for flight simulation.

Evaluating Polynomials

Since the very beginnings of electronic digital
computing, the preferred method of approximating elementary
functions has been polynomials. We have found no evidence
that parallel computing alters this choice. Thus we

concentrate on parallel methods of evaluating polynomials.

The evaluation of a polynomial of degree n,

Pn(x) = a0 + alx + ... + anxn

requires 2n operations2 . Thus Homer's rule

Pn = an

pi = (Pi+1x) + ai i = n-l,n-2,...,

Pn(x) = P0

2F. Winograd. "On The Number of Multiplications Required

to Compute Certain Functions". Proceedings, National
Academy of Science USA, Vol. 58 (1967), pp. 1840-1842.

- 13 -

is optimal for SISD computers because it requires precisely
2n operations and 2n time steps. But we know that, given n
processors, the lower bound for polynomial evaluation is
[lo 2 n]+1 time steps

3 . From this, and future examples, it

is clear that Homer's rule is no longer optimal for MIMD
computing, where execution time is the criterion.

To describe techniques for evaluating pAlynomials, we
require the following notational conventions:

(n,m) denotes a polynomial of n terms in which the
smallest is multiplied by xm, and

(0,m) denotes the variable x to the mth power.

To analyze the performance of the algorithms, we assumed:

(a) a sufficient number of processors that execute
arithmetic (add, multiply) in one time step are

available,

(b) results of an operation are available to all
processors in the next time step,

(c) processors suspend operations until all operands

are available, and

(d) there is no operational overhead in assigning a
process or performing an operation.

For HEP, assumptions a, b, and c present no problem so

long as "sufficient" does not exceed the number available
(for elementary functions, this is the case). In general,

3Ian Munro. "Optimal Algorithms for Parallel Polynomial
Evaluation". Journal of Computer and System Sciences, 1973,

pp. 189-198.

- 14 -

assumptions will not hold; as will be seen in the code for

elementary function, however, the assumptions do hold by use

of certain coding practices.

A straightforward method of evaluating a polynomial

Pn(x) is to decompose it into two polynomials of lesser

degree. This method computes Pn(x) as

Pn(X) = Qn/ 2 lx).Xn/
2+1 + Rn/ 2 (x)

where

Q n/2 (x) = anxn/ 2-1 + ... + an/2+1

and

Rn/2 an /2 + ... + a0

and then computes Qn'2 (x) and Rn/ 2((x) similarly by

binary splitting. Thus it starts by computing in parallel

ajx+a 0 , a3x+a 2 , a5x+a 4 , ... , anx+an I

and then

(Ax+a0)x
2 + a3x+a2 ,(a7x+a6)x

2+ asX+a4 ,...

The time required for this algorithm is approximately

2 log2 n.

This algorithm can be improved by performing the binary
splitting in the Fibonacci ratio instead of in halves. Let

F(i) denote the ith element of the Fibonacci sequence

1,1,2,3,5,8,13,21,...

and for a polynomial of degree n determine the least i such
that F(i) > n+1. We then split the evaluation of the poly-

nomial by:

- 15 -

(n+1,0) = [n+l-F(i-1),0I [0,F(i-1)] + [F(i-1),0].

The execution time for large n is a-log n + O(log n) where

a= 1/log[1/2(/5 + 1)] = 1.44.

An example of the use of Fibonacci splitting to evaluate a
polynomial of degree 20 is shown in Figure 4.

Improvements to the Fibonacci splitting method have
been reported (Munro, 1973), but the improvements appear
only for very large values of n. For elementary functions
where the degree of the polynomials is generally less than
20, a discussion of these improvements does not seem
warranted. Table 1 presents the largest degree polynomial
that may be evaluated in t steps using Fibonacci splitting
versus using the best known algorithms.

t = 2 3 4 5 6 7 8 9 10 11

Fibonacci 1 2 4 7 12 20 33 54 88 143

Best Known 1 2 4 7 12 21 37 63 107 187

Table I - Greatest Degree of Polynomial Computable in Time t

In addition to the splitting techniques, a generaliza-
tion of Homer's rule to make it amenable to parallel com-
puting has been reported by Dorn4 . If the execution time
of an addition and a multiplication are the same, however,

4W. S. Dorn. "Generalization of Homer's Rule for
Polynomial Evaluation". IBM Journal, April 1962, pp.

239-245.

- 16 -

-4 6-

ox L
- + VV

AC

0 ~ -0 -4

+
V

A/\ A

X A

-++ x
V V AC ~ x

A cI .^CD
0l -

-+V

17A

this method requires 2 log n steps for the evaluation of an

nth order polynomial.

Specific Examples

The approximation of elementary functions by an MIMD
computer requires not only techniques for parallel evalua-
tion of polynomials but also techniques for generating coef-
ficients of "best" approximations. The latter subject has

received extensive attention in the literature and is not
addressed here5 .

The specific elementary functions chosen to be included
in this study were the approximation of cosine and logarithm
(basee). The algorithms use a 64-bit floating point word

with an 8-bit exponent (Radix 16) and a 56-bit normalized
fraction.

Cosine

The cosine function accepts an argument (A) in the
range -1611 < A < 1611 and produces a result in the range
-1 < cos(A) < 1. The method used converts the argument into
the range 0 < x < 2n by the relationships

cos(x) = cos(-x) = cos(x+2KT).

Next, the argument is reduced to the range 0 to n/2 by the

relationships pictured in Figure 5.

5The interested reader is referred to Computer
Approximations by J. F. Hart, et. al. (New York: Wiley &
Sons, Inc., 1968).

- 18 -

/2

-cos(Ir-x) cos(x)

-Cos (t -x) cos (2 T-x)

3 72

Figure 5 - Cosine Function Relationships

Finally, the function is approximated by a 9th degree poly-
nomial in the converted argument x2. That is

cos(x) = P9 (x
2).

More concisely:

cos(a) =cos(6 b) 6 E (-I,1)
b > 0

cos(b) = cos(c + 2kr) kc(0,1,2,...,10 12)
0 < c < 2.

cos(c) 6cos(y) 6 E:(-1,1)
0 < y (/2

6, y defined 0 < c < /2 y = c

19

r/2 < c < y =-c
6 - 1

T< c < 3 V 2 y C- I

6 - 1

3 72 < c < 27r y 2r-c
6=1

cos(y) P9 (Y
2)

with coefficients

P0 = +.9999 9999 9999 9999 9999 3632 9000 E+0

P1 = -. 4999 9999 9999 9999 9948 3628 4300 E+0

P2 = +.4166 6666 6666 6665 9756 7005 4000 E-I
P3 = -.1388 8888 8888 8853 0208 2298 E-2
P4 = +.2480 1587 3014 9274 6422 2970 E-4
P5 = -. 2755 7319 2096 6674 8555 E-6

P6
= +.2087 6755 6674 2345 8605 E-8

P7 = -.1147 0670 1991 7777 7011 E-10
P8 = +.4776 8729 8095 7170 E-13

P9 = -.1511 9893 7468 8700 E-15

This polynomial approximation has an absolute accuracy
of 20.19 digits 10 (16.77 digits 1 6). Scaling the argument
into the range [0,2,] causes a loss of [og16 (A/2r
digits 16 . Therefore, the machine word size of 14 digits 16

should determine accuracy.

The approximation was programmed, and its accuracy
tested, with 50 uniformly distributed argument values in the
range 0 to 2. The results were compared with 112 bit rou-
tines. Statistically the results were as shown in Table 2.

- 20 -

magnitude base 2 log

maximum absolute error 1.01 x 10-15 -49.8

maximum relative error 1.99 x 10- 15 -48.8

average relative error 4.01 x 10-16 -51.2

Std. deviation of relative error 4.01 x 10-16

Table 2 - Accuracy of Cosine Approximation

The algorithm comprises the following tasks:

T I - Remove sign from argument

T2 - Scale magnitude of argument into 0 to 2

T 3 - Select quadrant reduction
T4 - Perform reduction and save quadrant sign

T 5 - Evaluate approximation
T6 - Combine approx. value and quadrant sign

T7 - Empty multiple last uses variables

The tasks have the following precedence graph:

T5 > T7

TI "T4 T6

All tasks except T5 have no internal parallelism or are more

efficiently processed sequentially. T5 ," Evaluate approxi-
mation", has the computational tree shown in Figure 6.

- 21 -

step y\/Y width

1 PY 2 P52P9 Y2 1

2 / P2 Y P4 P6/ 4 YX

PO YV 4, y 2 P
3 P3 Y6 2 P7 2 6

4~ 6

5 + \ / 4

6 + 2

7 +1

total 24

P9 (Y2)

Figure 6: Cosine Task 5 Computational Tree

This routine was programmed for HEP and resulted in the

following performance:

Total number of instructions executed 60

Number of instruction cycles used 24
Maximum number of concurrent processes 6

Average number of concurrent processes 2.50
Planned number of waved off instructions 1

Storage:
Total words of:

Program Memory 69
Register Memory 25

Constant Memory 29

Thus we have achieved a speed-up of 2.5 in evaluating the

cosine function.

- 22 -

Logarithm

The second elementary function examined was the approx-
imation of logarithm base e. The method breaks the input

range of the argument into two different ranges. Range I is
(2)-1/2 < a < (2)1/2, where the function uses a direct
rational approximation of the form:

log(a) = z(P3 (z
2)/Q3 (z

2)]

a-1
a+1

For Range 1I, (2)-1 /2 < a or (2)1/2 < a, we can use
the following relationships to convert to base 2 logarithm
and extract a bounded value to approximate:

loge(a) = loge(2) • log 2 (a)
log 2 (a) = log 2 (f-2

2) = n + log 2 (f), 1/2 < f < 1

We now approximate log 2 (f), the result of which we
combine with n, then multiply by loge(2) for the final
result.

log2 (f) =yR6 (y
2) - 1/2

y = 1/2(1 - ((2) 1/2/(f + (2)-1/2)1)

More concisely:

Range I
for (2)1/2 < a < (2)1/2

loge(a) =z(P3 (z
2)/Q3 (z

2)]

z = (a-1)/(a+1)

Range II -1/2
for a < (2) or (2)'' 2 < a

loge(a) = loge(2) • log 2 (a)

- 23 -

a = 6n 2 -N f n E f{64, ... ,631

N 1{0,1,2,31

1/2 < f < 1

10g 2(a) =(4n -N - 1/2(+ (log2 (f) + 1/2)

(1092 (f) + 1/2) yR6 (y
2)

y = 1/2 - (2) 1/2 / (2 -f + (2) 1/2)

Execution time decreases by

1oge(a) = lge(2) -(4n - N - 1/2) + yR'6 (y
2

where coef of R = loge(2) times, coef of R:

loge() z(P3 (z
2)/Q3 (

2)
p0 = -24.01 3917 9559 2105 1OE+0
P1 = +30.95 7292 8215 3765 O1E+0

P= -9.637 6909 3368 6865 93E+0
P3 = +.4210 8737 1217 9797 15E+0

g= -12.00 6958 9779 6052 55E+0
g1 = +19.48 0966 0700 8897 31E+0

9= -8.911 1090 2793 7831 23E+O
G= +1.0 E+0

109 2 (f) lo1ge(2) z yR'6 (y
2

ro=+4.000 0000 0000 0000 67E+0
r= +5.333 3333 3332 4188 96+0
r2=+12.80 0000 0198 2788 68E+0
r3=+36.57 1412 4660 5914 90E+0
r4=+113.7 8399 8715 0066 37E+0
r5=+371.1 3591 8715 6528 26E+0
r6=+1379. 3999 4910 9060 60E+0

These approximations provide 19.38 digits10 (16.09
digi'ts1 6) of absolute accuracy for Range I, and 17.18
digits10 (14.27 digits16) of relative accuracy for Range II.

-24-

As was the case with the approximation of cosine, this

approximation was split into several tasks to facilitate

parallelism. The tasks are as follows (tasks within

brackets [] apply only to Range II):

T - Select range

[T21 - Extract fraction (1/16 to 1)

[T31 - Extract exponent

[T41 - Select fraction and exponent adjustment values

IT5] - Adjust fraction (1/2 to 1)

T 6 - Form approx. argument
T7 - Evaluate approximation

[T8] - Form result exponent
[T91 - Combine exponent and approx. value

T1 0 - Empty mutliple last use variables

This set of tasks has the following precedence graph:

[TTT9
[T0

[T5 I- T6 -)>T7
[T2 1 T T1

T1, "Select range", has the following parallelism:

a < 21/2 21/2 < a

&2 3 T 4

(Range I) (Range II)

- 25 -

T6, "Form approximate argument", has the following
parallelism:

a 1a1

T7 , "Evaluate approximation", has the computational trees

shown in Figure 7.

The remaining tasks have no internal parallelism or are more
efficiently processed sequentially.

The logarithm approximation was tested using two sample

sets of 100 uniformly distributed values in the range 0 to 2

and 0 to 106• The results were compared against 112 bit
routines; the statistics on the accuracy obtained are given
in Table 3.

Range (0,2) magnitude base 2 log

maximum absolute error 7.61 x 10- 16 -50.2
maximum relative error 8.35 x 10- 16 -50.1

average relative error 3.20 x 10-16 -51.5
Std. deviation of relative error 1.84 x 10- 16

Range (0,106) magnitude base 2 log

maximum absolute error 6.55 x 10- 16 -50.4

maximum relative error 4.52 x 10-17 -54.3
average relative error 3.15 x 10- 17 -54.8

Std. deviation of relative error 7.48 x 10-18

Table 3 - Accuracy of Logarithm Approximation

- 26 -

Range I

numerator denominator

step zz z PO zqO width

\ 2 z Z2 P 3 4 2 3

2 z/ 2 */ 3 p \2 V
\ 3/ \jP2 z 1+ z q 3

3 5 +/

4 *+*4

5 ++2

6 1

total 17
operations

z(P 3 (z
2)/Q 3 (z

2))

Range 11

stepR r 3 y yy ro y r, y width

1r ry2 r2 V 4
2 r6 * y4

y
4 5

\/ \I- r \/ . /
4 +9 ~ + 4

5 2

6 + 1
21

yR 6 (y 2)

Figure 7 - Logarithm Task 7 Computational Trees

- 27 -

The approximations for the two ranges performed as follows:

Range I:

Total number of instructions executed 47
Number of instruction cycles used 30
Maximum number of concurrent processes 4
Average number of concurrent processes 1.97
Planned number of waved off instructions 6

Range II:

Total number of instructions executed 66
Number of instructions executed 32
Maximum number of concurrent processes 5
Average number of concurrent processes 2.28
Planned number of waved off instructions 4

Storage:

Total words of:

Program Memory 103
Register Memory 26

Constant Memory 69

Assuming that arguments in the two ranges are equally
probable, the speed-up of this algorithm is 2.125.

General Code Sequences

This section examines the problems of generating paral-
lelism at the machine instruction level for general code
sequences. The basic techniques consist of tree height
reduction methods. In some cases optimal algorithms exist,
in others only heuristic methods apply.

- 28 -

Tree Height Reduction Techniques

The basic entity to which tree height reduction applies

is expression evaluating. From simple fan-in arguments it
is clear that given an expression of n distinct atoms and

involving the binary operations of addition, subtraction,
multiplication and division, a lower bound on the tree

height is [log 2n]. In many cases, however, the tree produc-
ed by an ordinary compiler does not achieve this lower

bound. Thus we consider associativity, commutativity, and
distributivity to reduce tree height.

Consider the following expression and its tree repre-

sentation:

BC

(A + (B *C)) + DC

A
\ /

By associativity and commutativity, we can reduce the

expression and its tree height to:

(B * C) + (A + D)

The original expression could use only one processor

for its evaluation and required three time steps, whereas
the transformed expression can be evaluated by two proces-

sors in only two time steps. If we restrict ourselves to

- 29 -

associativity and commutativity, algorithms presented by

Baer and Bovet 6 have been shown to be optimal. But distri-

butivity can also reduce tree heights. Consider:

D\ E

F
A + B (C + D * E * F) + G

C

B

A \

+

G

This expression has a tree height of 6 and can be reduced by

associativity and commutativity to a tree height of 5. By

also using the laws of distributivity, however, we produce:

A +G + B * C + B * D* E * F

A G C B D E F

+
+

6j. L. Baer and D. P. Bovet. "Compilation of Arithmetic

Expressions for Parallel Computation". Information

Processing 68, North Holland Publishing Company, Amsterdam,

1969.

- 30 -

This has a tree height of 3. Using four processors would
result in a speed-up of 2 over the original expression.

Unfortunately, we cannot just distribute a multiplication
across a parenthesis and reduce tree height. For example,

A * B * (C + D)

has a tree height of 2. Using the distributive law, we get

A * B * C +A * B * D

which has a tree height of 3. There are good algorithms

that reduce tree height using distributivity, associativity,
and commutativity, but they are not necessarily optimal.

We now consider multiple expressions, as would be the

case with a set of assignment statements. Consider:

A=B*C*D B C

E F A *D

G=E+H*

F '

H

E *

G

This block of assignment statements has a tree height of 4,

which may be reduced to 3 by back substitution:

A=B*C*D
E F*B*C*D
G F * B * C *C + H

-31-

Observe, however, that considerably more operations have

been introduced to achieve this reduction.

In addition to arithmetic expression, linear recur-

rences offer a possibility for significant speed-ups.

Consider the linear recurrence represented by the following
nested DO loops:

DO 3 I = 1, 10

DO 3 J = 2, 10

3 A (I,J) = A (I,J-1) + B(J)

The outer loops can be done simultaneously as:

DO 31 J = 2, 10

31 A(1,J) = A(1,J-1) + B(J)
DO 32 J = 2, 10

32 A(2,J) = A92,J-1) + B(J)

Further, the interior of each loop is just:

A(I,J) = A(I,1) + B(2) + --" + B(J)

This expression can be evaluated in logarithmic speed.

Hence the total speed-up could be as high as 25. But this is

at a cost of considerably more code. Also, the efficiency

in this example is only 50%.

Another area that has been studied is conditional

branches represented by IF statements. For an isolated IF

statement, all instruction streams must be funneled through

the branch, as with a JOIN statement. But a section of code

with several IF statements and some assignment statements

may be expressed as:

(a) a set of assignment statements all of which may be

executed simultaneously,

- 32 -

(b) a set of Boolean functions all of which may be
evaluated simultaneously,

(c) a binary decision tree through which one path will
be followed for each execution of the program seg-
ment, and

(d) a collection of sets of assignment statements with
a single variable on the right where each set is
associated with each path through the tree.

These techniques have been written as a PL/1 program and

applied to a set of 86 FORTRAN programs7 . Averaged over
the 86 programs, these techniques could use 35 processors,

resulting in a speed-up of 9.2 and an efficiency of 33%.

Specific Examples

To determine the applicability of these techniques, we
examined the code of both the ground-launched missile and
the A-10 flight simulation. In neither case could we find
significant amounts of code where back substitution could be
applied. Further, the code contained no DO loops that con-

stituted linear recurrence equations. Nor were there signi-
ficant IF blocks that would benefit from reorganization. As
would be expected, however, arithmetic expression evaluation
provided extensive parallelism. For example, consider the
expression for the variable QDOT -- typical of expressions
from both programs.

QDOT = IYS * ((RHO/2) * (WS + WZ) * US * 4.83912 * CMA)
- US * 8.86989 * RHO/4 * CMQ * QS
- 21.1 * RS * PS - LC * FTZ)

7Kuck, David J. "Multioperation Machine Computational
Complexity". Complexity of Sequential and Parallel Numerical

Algorithms, J. F. Traub, Ed. (New York: Academic Press,
1973) pp. 17-48.

- 33 -

Figure 8 shows a standard parse tree for this assign-

ment. It contains 18 arithmetic operations and could be

evaluated in six time steps using five processors. This

would result in an efficiency of 60%. Figure 9 shows the

modified parse tree after associativity, commutativity, and

distributivity have reduced the tree height. This tree has

a height of only 5 and consists of 19 operations. The modi-

fied tree could be executed in five time steps using six

processors. This also results in an efficiency of 60%.

During this phase of the study, it became apparent that

applying these techniques to a significant section of code

was beyond the capabilities of manual techniques. The num-

ber of operations required makes it immensely time consum-

ing, and the probabilities of error would be so high as to
make the results suspect. The only alternative is to con-

struct programs to automatically analyze the code segments

and produce parallel instruction sequences. This, too, is a

significant task beyond the scope of the work. Section 5

discusses the impact and value of these techniques.

- 34 -

-61-

us 8.8-- RHO 4 RS PS

R 0 -2 WS WZ us 4.8- CMQ S 21.1 LC FTZ

+ +*** *

CMA

Figure 8 -Parse Tree of Expression for QDOT

-35-

- 36 -

SECTION 3: PARALLELISM AT THE TASK LEVEL

One of the most common methods of producing a parallel

program is to take a sequential program and "parallelize"
it. This involves identifying tasks within the sequential

program and recognizing that those tasks, together with the
implied flow of control, represent a task system. When such
a division is possible, standard techniques are available to
produce parallel code.

Task Systems

We define a task as a unit of computational activity

specified in terms of the input variables it requires, the
output variables it generates, and its execution time. The

specific transformation that it imposes on its input to
produce its output is not part of the specification of a
task. Thus the tasks may be considered uninterpreted. Let
J = (T1 ,T2,...Tn) be a set of tasks and <- an irreflexive

partial order (precedence relation) defined on J. Then C =

(J,<') is called a task system. The precedence relation
means that if T <" T' then T must complete execution
before T'.

From this definition we introduce a graphical repre-
sentation, called a precedence graph, for task systems.
This consists of a directed graph whose vertices (nodes) are
the tasks J and which has an edge from T to T' if T <- T'.
A T'' such that T <- T'' <- T' does not exist. Thus the

set of edges in the precedence graph represents the smallest
relation whose transitive closure is <.

Many sequential programs and program segments can be

viewed as precedence graphs. Figure 10 shows an example of
a program segment and its related precedence graph. Since
the relation <- is irreflexive, antisymmetric and transi-
tive, the precedence graph is acyclic -- it represents only

- 37 -

C**TASK 15 COMPUTE THRUST
NDX= ITHRUST- 1

IF(TIME .LT. THRUSTIME(ITHRUST)) GO TO 151

NDX=ITHRUST

IF (ITHRUST .LT. LTHRUST) ITHRUST=ITHRUST+1

151 THRUST=THRUSTAB(NDX)+THRUSTSL(NDX)
*(TIME-.THRUSTIME(NDX))

C*** TASK 23 COMPUTE LT

NDX=ILT- 1
IF(TIME .LT. LTIME(ILT)) GO TO 231

NDX=ILT

IF (ILT .LT. LLT) TLT=ILT+1

231 LT=LTAB(NDX)+(TIME-LTIME(NDX))*LTSL(NDX)

C

C*** TASK 29 COMPUTE CMQS
NDX=ICMQS- 1

IF(TIME .LT. CMQSTIME(ICMQS)) GO TO 291

NDX=ICMQS

IF(ICMQS .LT. LCMQS) ICMQS=ICMQS+1
291 CMQS=CMQSTAB(NDX)+(TIME-CMQSTIME(NDX))*CMQSSL(NDX)

C
C*** TASK 11 COMPUTE TIME

CALL RK11(STEP)

C

C*** TASK 5 COMPUTE QS

QDOT=$T(70)

CALL RK5(STEP)

TASKTASKTASKTASKTASK
15 2329 115

Figure 10 - Program Segment and Related Precedence Graph

-38-

straight line code (or code that can be viewed as straight
line). We can deal with data-dependent branches that fall

entirely within a task, but not conditional branches to

other tasks. Further, many loops can be "unrolled" (viewed

as straight line code) and handled in an acyclic manner. In
one instance, discussed later, we can deal with specific

kinds of cyclic graphs.

With each task T we associate two events: initiation

and termination. An execution sequence of an n-task system

C = (J,<') is any string 6 -a 1' 2-'*''2n of task events
satisfying the precedence relation and consisting of exactly

one initiation and one termination event for each task. A

task system that represents a sequential program has only
one execution sequence; for other task systems (perhaps

equivalent to the sequential task system) there may be

several.

To discuss determinant task systems, we must define an

ordered set of memory cells M = (Ml, M2,...,Mm) that repre-

sents the physical system on which task systems execute.

With each task T in a system C we associate two, possibly
overlapping, ordered subsets of M: the domain DT and the

range RT. When T is initiated it reads the values stored
in its domain cells; when it terminates it writes values
into its range cells. Given an execution sequence S for a

task system, we can define the value sequence V(Mi,5) as the
sequence of values written by terminating tasks in 6 for

which Mi e RT. Before the first event in any execution

sequence, we expect the memory cells to contain values. We

refer to that set of values as the initial state Po.

We can now define more rigorously the intuitive concept

of determinant task systems:

A task system C is determinant if for any given

initial state Po, V(Mi,6) = V(Mi, d '), 1 < i < m,

for all execution sequences 6 and 6,.

- 39 -

From this definition, it is clear that a task system
that represents a sequential program is determinant since
there is only one execution sequence. Given two task
systems both consisting of the same tasks, they are said to

be equivalent if they are determinant and, for the same
initial state, produce the same value sequences.

Our goal now is to define a method by which, given a

determinant task system (i.e. one representing a sequential
program) we can derive another determinant task system

equivalent to the first which has in some sense more paral-
lelism. In fact, our method will derive one with maximum
parallelism subject to the constraint that we have no know-
ledge of the internal transformations performed by the
tasks. We begin with the following definition:

Given a task system C, then tasks T and
T' are noninterfering if either

T <, T' or T' <- T 0"

-or-

RT n RT , = RT n DT' = RT n DT =0

We now state, without formal proof 8 , a fundamental
Theorem regarding noninterfering tasks and determinancy:

Task systems consisting of mutually

noninterfering tasks are determinant.

The final development falls naturally from the Theorem.
Given a determinant task system C = (J, <,) we construct

8Interested readers may consult Operating Systems Theory
by Edward G. Coffman, Jr. and P. J. Denning (Englewood
Cliffs, NJ: Prentice Hall, 1973).

- 40 -

RL

another task system C' = (J,<-') that is equivalent to C

but whose precedence relation is constructed from <- on

the basis that (T,T') e <'' only if it is necessary to

insure that T and T' are noninterfering. The resulting task

system is, by the Theorem, determinant. Further, it is

maximally parallel in that any further reduction of the

precedence relation results in nondeterminancy. Finally,

since <'' c <, every execution sequence of C is an

execution sequence of C' and, since C' is determinant, every

execution sequence of C' produces the same value sequence.

Therefore C' is equivalent to C. This is formally stated in

the following Theorem:

From a given determinant task system C = (J,<-)

construct a new system C' = (J,<'') where <-'
is the transitive closure of the relation:

X = {(T,T') <-I(RTnRT,) U (RT nDT,) U (RT'f DT) # 0 }

Then C' is the unique, maximally parallel task system

equivalent to C.

Scheduling

Standard Task Systems

Given a determinant task system and the execution time

of each task, the problem remains of assigning the tasks to
p processors. More formally, we define the scheduling

problem to be the following: we are given

(1) a set of tasks J = {rl, T2,...,Td
(2) an irreflexive partial order <- on J,

(3) a weighting function W from S to the positive
integers, representing the execution time of each

of the tasks, and

(4) the number of processors p.

- 4 -

We may be executing as many as p tasks at any point in time.

If task T is first executed at time t using processor K,
then it is executed only at times t, t+1,..., t+W(T)-1 using

processor K each time. It is also required, for any task T'
such that T' <- T, that T' complete execution at time t'
when t' < t. A schedule is an assignment of tasks to
processors that satisfies the above conditions and has

length tmax, where tmax is the maximum, over all tasks, of
the times at which the termination events occur. The

scheduling problem, then, is to determine an assignment that
minimizes tmax. This problem is NP-complete 9 and can be

considered intractable. There are, however, polynomial time
bound algorithms that produce good schedules. One such
algorithm is critical path list scheduling.

The algorithm is defined as follows:

(1) Given a task system and a list that orders the
tasks, we require a scheduling strategy that

assigns (to a free processor) the first unassigned
task in the list whose precedence constraints have

been met. Such a strategy is called demand list
scheduling.

(2) The critical time of a task is the execution time

of that task plus the maximum critical times of
any successor tasks.

(3) If the tasks are ordered on nonincreasing critical
time, then the resulting list schedule is called
critical path list scheduling.

9J. D. Ullman. "Polynomial Complete Scheduling Problems".
Operating Systems Review, Vol. 7 No. 4 (1973), pp. 96-101.

- 42 -

*

Kohler I0 reports a preliminary evaluation in which 20
task systems, scheduled using critical path list scheduling,

produced 17 optimal schedules. The worst-case schedule was
only 3.4% longer than optimal. Using only limited back-

tracking with a critical path list scheduler, Lord 11 found
that in 100 randomly generated cases, 89 were scheduled

optimally. He further found that for all cases the
schedules had an expected time of only .36% longer than

optimal. The worst-case time was 5.6% longer. Thus we
conclude that critical path list scheduling is an acceptable
technique for practical application.

Cyclic Task Systems

As we have observed before, the standard task system
represents an acyclic computational method. This method
applies to repetitious calculations such as flight simula-
tion problems by treating the calculation of derivatives and
the updating of the state variable as a task system,
scheduling those tasks, and then repeatedly executing that
schedule. In some cases, however, shorter solution times

can result if we represent the problem as a cyclic task
system. For example, consider the Van der Pol equation

written as two first-order equations:

xl = x2

2
x2 = u(- x1)x2 - x1

10W. H. Kohler. "Preliminary Evaluation of The Critical
Path Method for Scheduling Tasks on a Multiprocessor

System". IEEE Transactions on Computing, Vol. C24 No. 12
(December 1975), pp. 1235-1238.

11R. E. Lord. Scheduling Recurrence Equations for Solution
on MIMD Type Computers. PhD Dissertation, Washington State

University, 1976.

- 43 -

A ...- ~--- - UI

By using some suitable integration method (for example,
4th order Runge-Kutta as indicated by the function rk), the
main part of a program for solving these equations is as
follows:

while time < runtime do

for i <--- 1 until 4 do

der, <--- x2

der 2 <--- u*(l-x1 *xl)*x 2-xl

x, <--- rk(derl,i,l)

Kx2 <--- rk(der2 ,i,2)

time <--- time + h

The calculation interior to the "for" loop can be
represented by the acyclic precedence graph shown in Figure
11. Assuming that each binary operation can be executed in
one time unit and that the function rk can be evaluated in
four units, the entire "for" loop can be represented by the
cyclic precedence graph shown in Figure 12. T3 calculates
u*(1-x1*xl), T4 calculates *x2-xl, and Ti and T2 calculate

the function rk.

Given two parallel processors, one way to schedule this
solution is to assign the tasks interior to the "for" loop
to processors. This should be done in such a way as to pre-
serve the precedence relations and yet complete all tasks as
quickly as possible. The solution to the problem is the
repeated execution of this schedule. Such an assignment is
shown by the Gantt chart in Figure 11. Note that this
assignment is as good as possible -- the precedence graph
has a maximum path length equal to the assignment period.

- 44 -

XI Xl

/1.0 /

/

2

/

2x
p F~ T 1 T T T T2 T T1

PIT3 T4T I T3 T4 TI T3 I4 T

P222 T--~ 2 K

Figure 11 - Acyclic Precedence Graph and Schedule

- 45 -

T

T3

T4_ T4 2~

1 ,1 T41 1 -T1
P2 - 4 1 T2 -1 1>~- 2 T4 :

Figure 12 -Cyclic Representation and Schedule

-46-

The Gantt chart in Figure 12 shows the assignments made
if we assume some initial values for X, and X2 and then

assign the tasks from the cyclic precedence graph while
maintaining all precedence constraints. This assignment has

a repetition period of seven units, as compared with nine
units for assigning the acyclic precedence graph. This
shorter schedule is the motivation for examining flight
simulation equations to determine their minimum solution

period and to schedule them in that minimum period with as
few processors as possible.

The method used constructs a task system representing

the solution to the flight simulation equations, where the
tasks that update the state variables are flagged. The

precedence graph of the task system is allowed to be cyclic
so long as each cycle traverses at least one flagged task.
The minimum solution period is then determined by examining
all cycles in the graph.

Let the cycles be denoted by C1 , C2,...,Cm. For each

cycle let L(Ci) denote its length and #(Ci) the number of
flagged tasks in the cycle. Then the minimum solution
period tmin is:

tmin = Max { FL(Ci)/#(Ci) 1 < i < m}

Once the minimum solution period is determined, a critical

path list scheduler can, with only slight modifications,
produce an efficient schedule whose repeated execution

solves the flight simulation problem.

Synchronization

Once a schedule has been determined, there must be some
way to insure that the schedule is followed. A general

assumption made regarding MIMD computing is that the precise
execution rate of individual processors cannot be used to
prove the correctness of a program. This assumption applies

- 47 -

to HEP; although we know that execution rates of processes
are generally the same, detailed knowledge of the progress
of each process is beyond the scope of normal analysis of
programs. Thus, having determined a schedule for computing

the tasks, it now remains to implement it.

Much of the work on scheduling assures, at least
implicitly, that some mechanism external to the processors

assigns the tasks to the processors. But our execution
times are estimates only, so the scheduling mechanism would

have to monitor the progress of all processors. Instead we
seek a mechanism whereby all the tasks to be executed by a
single processor are presented as a sequential program.
Synchronization primitives, operating on semaphores, coordi-

nate those tasks.

Dijkstra 12 introduced the primitives P and V, which
operate uninterruptably on an event variable termed a

semaphore, to control resource allocation among concurrent
processes. For our purposes we may define P and V as:

P (E): if E 1 V (E):
then E-E-1 E-E+1
else wait

P is normally used before a process uses a nonsharable

resource; V is executed when the use of the resource is

completed.

Denning 1 3 shows that these primitives can synchronize

concurrent tasks. As an example, consider the task system

12 E. W. Dijkstra. "Cooperating Sequential Proesses".

Programming Languages, F. Genuys, Ed. (New York: Academic

Press, 1968) pp. 43-112.

1 3 p. J. Denning. "Third Generation Computer Systems".
Computing Surveys, Vol. 3 No. 4 (1971) pp. 175-216.

- 48 -

and concurrent program shown in Figure 13. The program uses
P and V operating on the suitably initialized semaphore X23.

Clearly, the program correctly executes the task system.
Since we are using task systems to represent computations,

precedence constraints arise because one task computes data
elements used by another task. If we were to consider a
task system that represents a calculation loop, such as
shown in Figure 14, we find that the first program still

represents a valid solution to the problem. This is because
it is implied that both stream 1 and stream 2 complete
execution before beginning the second execution of these
streams.

Such methods of computation have been previously

proposed for handling looped and conditional execution using
constructs named "fork" and "join". But if the alternate

program executes the task system, then the P and V
operations are no longer valid. This is so because if S2
runs more quickly than S1, at some point T2 completes the
calculation of the data element that causes the precedence

constraint before T3 has consumed the previous value. Even
if we assume a queue for this data element, in any real

implementation the queue would be of finite size and hence
subject to overflow. To overcome this difficulty, we use
two state semaphores associated with each data element or
variable, as indicated by:

1 VAR
2 VALUE
2 SEMAPHORE ['E','F']

where 'E' indicates empty and 'F' indicates full. We now
define the P and V operations as:

P(VAR):
IF VAR.SEMAPHORE = 'F'
THEN VAR.SEMAPHORE <- 'E'
ELSE WAIT

- 49 -

Ti13T

PARBEGIN

SI: TI; P(X23); T3; T4

S2: T2: V(X23); T5

PAREND

Figure 13 - Task System and Concurrent Program

- 50 -

(L Ti T3 T

T2

REPEAT N TIMES

PARBEGIN

Si: Ti; P(X23); T3; T4

S2: T2; V(X23); T5

PAREND

ALTE RN ATE

PARBEGIN

Si: REPEAT N TIMES

TI; P(X23); T3; T4

END
S2: REPEAT N TIMES

T2; V(X23); T5

END

PA RE ND

Figure 14 - Task System for Repeated Execution

-51-

V(VAR):

IF VAR.SEMAPHORE = 'E'

THEN VAR.SEMAPHORE <- 'F'

ELSE WAIT

Then if we let X23 represent the variable responsible for

the precedence constraints from T2 to T3, the alternate pro-

gram correctly executes the task system.

To further simplify the programming aspects of such a
synchronizing method, we note that, in a language involving

assignment statements, context determines whether the opera-
tion is P or V. That is, any synchronizing operation on the

left of the assignment symbol denotes a V operation. All
others denote a P operation. In HEP FORTRAN, $ represents

both P and V; context denotes which operation is implied.

If some task Ti computes a value used by two other tasks, T2

and T3 (each in separate instruction streams), then the

coordination problem between Ti and T2 is separate from the

coordination problem between TI and T3. Hence, two copies

of the variable are required so that two separate semaphores

are available.

Automated Techniques

During the course of this study, we developed and used
programs to automate many of the steps involved in preparing

a problem for parallel solution. We believe that sufficient
knowledge is available to construct a CSSL-type language

translator 14 that would produce efficient parallel code for
the types of problems we have studied. Rut the class of

problems so far studied is relatively small; desirable

14See "Continuous System Simulation Language" by J. C.
Strauss, et. al. Simulation, Vol. 6 No. 12, December, 1967.

- 52 -

extensions to such a language may be poorly understood.
Thus we feel that a practical approach for the immediate

future is to use a set of utility programs that will signif-

icantly aid programmers in constructing parallel programs

yet not impede them in the methodologies they use. In the

remainder of this section we discuss the various utility

programs which we feel would be useful and the source lang-

uage restrictions they would impose on the programmer.

We assume that the definition of a flight simulation

problem will be extended to a sequential FORTRAN program

that defines the derivatives in terms of the state variables

and updates the state variables by whatever technique is

desired. In general, we assume that updating each state

variable is a separate program segment, so they can be

designated individual tasks where desirable. Since each

program segment must be simple enough to be represented by a

cyclic task system, restrictions on conditional branches

will be required. Selecting code segments for tasks is not

unique -- we can give only guidelines as to what constitutes

a good selection. Thus we require the programmer to specify

which pieces of code constitute tasks. No branches can

occur from one task to another. In practice we have found

that this restriction is not at all severe.

There are a variety of methods the programmer could use

to indicate what constitutes a task. We have used a comment

card of the form

C***TASK n [,SV]

to indicate that the following statements constitute task n;

the option SV indicates that the task updates a state or
recurrence variable. This directive is terminated by

another task comment card or by an END card. Since the

final maximally parallel task system equivalent to this

sequential programn is derived from the ranges and domains of

the tasks, and since range and domain determination is not

always possible in FORTRAN, further extensions of the

comment cards are required. Specifically, if the statement

- 53 -

CALL SUBR (A,B,C,)

is within a task, there is no way to determine if A, B, and

C are in the range of this task, the domain of the task, or

both. Also, it may not be worth the effort to analyze all
of the equivalence statements. Thus we use comment cards of

the form

C *** RANGE (list)

and

C * DOMAIN (list)

to indicate that all variables within the list are in the

range or domain of the current task.

Another piece of information required by automated

analysis is an estimate of the execution time of each task.
We have chosen the units of this measure to be the number of

instructions executed wittin the task. If the code con-

stituting the task is straight line code, the number of

instructions is known at compilation time. But if the task

contains conditional branches or invokes external subpro-

qrams, the execution time of the task is not usually deter-
minable; the programmer must supply an estimate. To this

end we use a comment card of the form

C *** TIME n

to specify the execution time as n machine instructions.
Note that specifications of range, domain and time are

required only if the form of the code precludes the utility

from determining the values.

A final comment card reduces analysis time by listing

local variables that are to be excluded from range-domain
analysis. This card has the form

C *** LOCAL list

and indicates that, for this task, variables in the list are

to be excluded from both the range and domain of the task.

- 54 -

This is used mostly for variables that are first in the
range and then in the domain, as would be the case for DO

loop control variables.

A PASCAL program was constructed for this study to
determine range and domain. It soon became evident, how-

ever, that this program must perform lexical and syntactic
analysis of FORTRAN source code just as the FORTRAN compiler

must do. Therefore, compiler output was used to determine
the task system. This requires the following:

(1) A source code image. This allows the extent of

the tasks to be determined, and comment cards
pertaining to range, domain and time to be
examined.

(2) An image of the generated machine code. This
allows execution time to be estimated for

those tasks that consist of only straight
line code.

(3) A cross reference listing. This allows ranges

and domains of the tasks to be determined.

If suitable compile options are invoked, all this informa-
tion is in the compiler output listing. The output of this
program is the cyclic task system required for a scheduler,

and the names of variables involved in intertask communica-
tion. An additional output is a file of the source program,
which is used to construct the parallel program.

The second utility program is the scheduler. The
inputs are a cyclic task system, an estimate of the execu-

tion time, and a specification of the number of processes.
The output is a schedule that is not necessarily optimal but

has good efficiency. In test runs, the schedules produced
for 100 randomly generated cyclic task systems resulted in
93 schedules that were optimal. The expected schedule
length was no more than .158% longer than optimal.

- 55 -

The third utility program uses the output of the

previous two programs to determine the synchronization

required to insure that the schedule is not violated. The
basic algorithm examines, for each pair of tasks to be exe-

cuted in different processes, which variables are in the

range of one and the domain of the other. For those varia-

bles, asynchronous (semaphored) variables must be used.

For each variable V i it must be the case that V i c RT

for some task T. The possibilities for each variable are:

(a) For all tasks T' such that V i , DT,, T' has been

assigned to the same processes as T, in which case no
synchronization is required.

(b) There is only one task T' with V i c DT , and it has

been assigned to another processor. Further, if the

variable name has only one instance in both T and T',

then the variable name is prefixed with a $ in both T

and T' and the asynchronous variable is placed in

COMMON.

(c) There are multiple tasks T' such that V i E DT , and

some of these tasks have been assigned to different

processors than T. In this case, for each T' which has

been assigned to a different processor we associate a

new asynchronous variable $W. This variable is placed

in COMMON. The assignment statement $W = Vi is placed

at the end of the code for T, and the assignment

statement V i = $W is placed at the beginnin, of the

code for T'.

Another utility program that would be useful is one
that actually constructs the code sequences for the various

processes based upon the preceding analysis. This would be

particularly useful in a system with a flexible text editor.

This would allow the programmer to add output statements or

- 56 -

exception-handling code. This utility has no firm technical
requirements; it is more a convenience feature for the

programmer.

Results

The methods of the previous section were applied to the
flight simultion of a ground-launched missile. The methodo-

logy employed in programming the flight simulation equations
for an MIMD computer can be divided into several categories.
These include equation segmentation, scheduling and synch-
ronization.

Equation segementation takes a representation of the

problem, in our case a sequential FORTRAN Program, and
identifies the tasks. These tasks are considered to be

individual computational activities, and could range from
individual machine instructions to groups of FORTRAN state-

ments. We chose individual statements or small groups of
statements, where any branching took place entirely within

the group of statements identified as a task. An example of
this task selection is shown in Figure 15, which shows a

portion of the sequential code and indications of some
specific tasks. In this case a total of 40 tasks were

identified. Ten of them update the state variables by the
chosen integration method, and one updates the independent

variable time. The remaining 29 tasks are associated with
evaluating the derivatives.

The next step was to estimate the execution time of

each task. Since the HEP computer executes all instructions
in the same time, this involved compiling the program and

counting the number of machine instructions generated by
each task. The number of instructions per task ranged from
2 to 88, with an average of 34.6. We next determined a
maximally parallel task system equivalent to the set of

tasks selected, and the sequential program for those tasks.

- 57 -

0127 C
0128 C*** TASK 17 COMPUTE ACO
0129 tUXIACOI
0130 IFITI E *LT* ACDOTM(IACDO)) GO TO 171
0131 NJOX=IACUO
0132 ZF(IACOO -LT, LACO) IACDOIACD0+1
0133 171 ACDO=ACDOTB(NDX)+(TIME.ACOOTM(NOX))
0134 *ACOOSL(140X)
0135C

0136 C*** TASK 18 CU1PUtE UDOT

i0137 UUOT=RS*vS-WS*QS-32.17*STHETA+MASS*
013(3 :(rHiRUST-RHO/2*(US4X)*(US+1wX)*ACDO,

013'9 C*** TASK 19 CO:mPUTE FTY FTZ
0140 GAr.TE(THETATHETAZ)*COSPHI+(PSI-PSIZ)*SI-4PHI

::::0141 GA~iPSI=(PSI-PSIZ)*C0SPHI-(TltETA-THETAZ I*SIN'PHI
0142 FY=3441*GAMPSI
0143 IF (ABSCFY).LE.3801 GO TO 35
0)144 FY=SIGB4380**FY)
0145 35 FZ=8441*GAvITHE
()146 IF (AES(FZ).LE.380) GO TO 36
0147 Fz=SiuN(380.qFZ)

014C 36 Cr4TI N UE
0149 FTY=FY*COSPHI+FZ*SINPHi
0150 FTZFZCOSPII-FY*SIJPH,
0151 C*.* TASK 20 COMPUTE ACNAPI
0152 IF (MACH -LT. ACfJMH(IACN)) GO TO 201
0153 NUX=IACM

t'0154 IF(IACN .LT9 LACN) IACN~IACN.1
0155 GU TO 203
0156 201 IF (MACH *GE. ACNMH(IACN-1)) GO TO 202
0157 IF (ZACN *GT, 2) IACN=IACrj_1
0158 202 NDX=IACtJ-1
0159 203 ACrAPH=ACr4TABtIDX)+(MACH-ACNMH(NUX))
0160 **ACNSL(NOX)

0161 C
0162 C*** TASK 21 COMPUTE VOOT
0163 VOOT=t1ASS*IFTY-RHO/2*Us*ACNJAPH*(VS-Wy))-RS*US
01b4 C
0165 C".* TASK 22 COMPUTE WL)OT
G166 WUOT=QSsUS+32.17*CTHETA+MASS*(RHO/(-2)*US*ACNAPH*
0167 t(WS+WZ)-FTZ)
0168 C"** TASK 23 COMPUTE LT
0169 PJDX=ILT-1
0170 IFITIrlE *LT* LTIMEIILTO) Go TO 231
0171 NDX=ILT
0172 IF (ILT *LT* ILT) ILT=ILT+l
C173 231 LT=LTABUJODX)+(TIME-LTiMErJ0xJ ILTSL(f,)oKj
01714 C

Figure 15 -Task Selection

-58-

Figure 16 shows the task system for the 40 tasks com-
prising the problem solution. The task number and execution

time (in machine instructions) are within the nodes. All
arcs go left to right. Observe that the three tasks
highlighted in Figure 15 (tasks 18, 19 and 20) can all be
executed in parallel.

Before scheduling, we make a transformation on the

parallel task system to shorten the solution time. In
Figure 16 we see that the longest path traverses nodes 7,

39, 19 and 31, and has a length of 212 units. This path
does not determine minimum execution time, however, because

there is no path from node 31 to node 7. The minimum time
is instead determined by the cycle traversing 7, 39, 19, 32,

6 and 3, which has a length of 252. This yields a minimum
execution time (for n iterations) of n * 126 + constant.

The next steps in our methodology were scheduling the
transformed task system for execution on p processors and
synchronizing. Figure 17 shows the resulting schedule.

The schedules for the flight simulation problem were
programmed for HEP FORTRAN and were executed on the HEP.
Equation segmentation, in conjunction with the fourth-order

Runge-Kutta formula given by (RK4), was used for the

eight-processor schedule shown in Figure 17. The computa-

tions of the integration formula were also done as parallel
tasks. This scheme was also programmed using six proces-

sors; the speed-up was 3.98. The speed-up and efficiency of
the eight processor program, along with the computational

results, are shown in Table 4.

PROGRAM P T I Tp Sp Ep

RK 8 28.18 4.87 5.78 72.3%

Table 4. Speed-up & Efficiency, Eight Processors

- 59 -

o- oIc cn m co 0l

U)U
a:,
Xw

>4

wq

z 0)

e~j -

C',

-60-%0

_____ _____C%J

(0

0 _0_0_LO

to)~
......... .

L)~a-9

Cl Cl)
0S

cl t

C~j 0

V.-_ __

CL~ V. ((

-n 61

Subsequent analysis has shown that the speed-up shown

in Table 4 can be increased to 7.0. This is accomplished by

reducing the amount of synchronization. The following

'analysis indicates the efficiency losses in the solution.

Let
A = number of cycles required by actual

computation,
B = number of cycles required by the best

schedule,
C = number of cycles required by synchronization.

For the eight-processor scheme with RK method, the values of

A, B and C are:

A = 1384/8 = 173 cycles

B = 192 cycles = 10.9% of A

C = (78 + 2)/B = 19.5 average

and C = 23 for worst case = 11.9% of B

The total number of cycles is then given by

Cycles = A + (B - A) + C
= 173 + 19 + 23

= 215

The predicted solution time is given by

PST = Cycles x 28,000 x .8 x 10- 6 = 4.816 seconds

Compare this to the actual solution time, given by Table 4,

of 4.87 seconds.

Although execution of the A-10 code was impossible, as
discussed in Section 1, some analysis was made of the four

subroutines ZM6SF101, ZM6SF102, ZM6AF103, and ZM6SF10E.
These subroutines were treated as a single code segment and

were divided into 50 tasks. The total execution time of the
tasks was 2803 machine instructions, or 2.242 milliseconds

- 62 -

on HEP, using a single processing stream. Since the execu-
tion speed on HEP considerably exceeds the requirement 15 ,

large amounts of parallelism did not seem required. We did,
however, schedule the task system for maximum speed-up,

which for this system resulted in a solution time of 671
machine instructions or .537 milliseconds using five

processors. The efficiency of this solution is 83.5%, but
does not include synchronization requirements.

1533.3 milliseconds (30 times per second), as specified by

comment lines in the subroutine ZM6SF101.

- 63 -

SECTION 4. REORGANIZATION

This .ection deals with problem-solving by alternate

methods that are either inherently parallel or lend them-

selves to parallelization. Specifically, we cover the pro-

blem of solving ordinary differential equations and examine

two examples in the general area of mathematical library

functions.

Parallel Techniques for Ordinary Differential Equations

General Methods

This section deals with parallel methods for solving a

set of n ODEs denoted by

y'(t) = f(t, y(t)) , y(t 0) Y0 (1)

where

to, t c R, y0 c Rn, y : R -> Rn, f : R x Rn -> Rn

Most methods that solve (1) generate approximations Yn

to y(t n) on a mesh a = to < tj < t2 <...<t N = b. These

are called step-by-step difference methods. An r-step dif-

ference method is one that computes Yn+1 using r earlier

values Yn, Yn-1, "'', Yn-r+1. This numerical integration of

(1) by finite differences is a sequential cai lation.

Lately, several authors have addressed the question of using

some of these formulas simultaneously on a set of arithmetic

processors to increase the integration speed.

- 64 -

Interpolation Method

Nievergelt 16 proposed a parallel form of a serial
integration method to solve a differential equation, in
which the algorithm is divided into subtasks that can be
computed independently. The method is as follows:

(1) Divide the integration interval [a,b] into N equal
subintervals [ti_I, ti), t0 = a, tN = b,
i = 1, 2, 3, ... , N

(2) Make a rough prediction yQ of the solution y(ti)

(3) Select a certain number Mi of values yij' j = 1,

Mi in the vicinity of yi

(4) Integrate simultaneously (with an accurate
integration method M) all the system

y' = f(t, y), y(t0) = Y0 , to (t < tl

y' = f(t, y), y(ti) = Yij 'ti S t -< ti+1

j = 1,..,Mi, i=l,..,N-1

The integration interval [a,b] will be covered with
lines of length (b=a)/N, which are solutions of (1) but do
not join at their ends. These branches are connected by

interpolating, at t1 , t2, ... , tN-1' the previously
found solution over the next interval to the right. The
time of this computation can be represented by

Tp P = 1/N (time for serial integration)

+ time to predict y9

+ interpolation time + bookkeeping time

16 j. Nievergelt. "Parallel Methods for Integrating

Ordinary Differential Equations". Journal of Computer and

System Sciences, 1973, pp. 189-198.

- 65 -

Interpolation can be done in parallel. If we assume

that the time-consuming part is really the evaluation of
f(t, y), the other contributions to the total time of compu-

tation become negligible. The speed-up is roughly 1/N. But
to compare this method with serial integration from a to b
using method M, the error introduced by interpolation is
important. This error depends on the problem, not on the
method. For linear problems the error is proved to be
bounded, but for nonlinear problems it may not be. Thus the
usefulness of this method is restricted to a specific class
of problems, and depends on the choice of many parameters
like yQ, Mi, and the method M.

Runge-Kutta (RK) Methods

The general form of an r-step RK method, the integra-

tion step leading from Yn to Yn+1' consists of computing

K1 = hn f(tn , Yn)

Ki = hn f(tn + aihn, Yn + bij Kj)

Yn+1 = Yn + RiKi

with appropriate values of a's, b's, and R's. A classical
four-step serial RK method is

K, = hn f(tn' Yn)

K2 = hf(tn + h/2, Yn + (1/2)K 1)

K3 = hf(tn + h/2, Yn + (1/2)K 2) (RK4)

K4 = hf(tn + h, Yn + K3)

Yn+1 = Yn + 1/6(KI + 2K2 + 2K3 + K4)

- 66 -

Miranker and Liniger 17 considered Runge-Kutta formulas

that can be used in a parallel mode. They introduced the

concept of a computational front for allowing parallelism.

Their parallel second and third order RK formulas are

derived by a modification of Kopal's results 1 8 . The

parallel schemes have the structure:

1
first order: K1 = hn f(tn, yn) (RK1)

y = y1 + KI
n+1 n

second order: K2 = K = h f(t , y1)
1 1 n n n

1 2
K2 = hn f(tn + ahn, Yn + bK1) (RK2)

y2 R2 K2 + R2 K
n+1 1 1 2 2

third order: K3 K,

K 3 = K
2 2

2 3 3
K3 = hn f(tn + ahn, Yn + bK1 + cK 2) (RK3)

y3 = R3 K3 + R3 K3 + R3 K3.
n+1 1 1 2 2 3

17N. L. Miranker and W. M. Liniger. "Parallel Methods for
Numerical Integration of Ordinary Differential Equations".

Mathematical Computation, Vol. 21 (1967), pp. 303-320.

18Z. Kopal. "Numerical Analysis with Emphasis on The

Application of Numerical Techniques to Problems of

Infinitestimal Calculus in Single Variable". Wiley, New
York: Chapman & Hall London, 1955 M R 17, 1007.

- 67 -

The parallel character of these formulas is based on
the fact that RKi is independent of RKj if and only if

i < j , i ,j = 1, 2, 3. This implies that if RK runs one
step ahead of RK2 and RK2 runs one step ahead of RK3, then

(using Kopal's values of R) the parallel third order RK
formula is given by:

K = hf(tn+ 2 , y)
1,n+2 n+2

yl 1 yl + K (PRK3)

n+3 n+2 1,n+2

K = hf(t + ah, yl + aK
2,n+I n+1 n+1 1,n+1

y2 = 2 + (1-1/2a)K + (1/2a)K
n+2 n+1 1,n+1 2,n+1

K hf(tn + a1h, y
2 + (a, - 1/6a)K + (1/6a) K

3,n n 1,n 2,n

3 y3 + [(2a, - 1)/2a](K - K) + K
n+1 n 1,n 2,n 3,n

where

a = 2(1-3a 2)/[3(1-2a1)].

One value of "a" suggested by Kopal is 1. This gives

al = 1/2 + 1/2/-7. The above third-order RK formula
requires three processors to compute the three function

evaluations in parallel.

The main drawback of (PRK3) is that it is weakly
stable. Miranker and Liniger (1967) show that the scheme

leads to an error that grows linearly with n as n -> - and h
-> 0 for tn = nh - constant. This problem is due to the

basic nature of the one-step formulas with respect to their
y-entries, which are the only ones that contribute to the

discussion of stability for h -> 0.

- 68 -

-h. .-. . ..

Predictor-Corrector (PC) Methods

The serial one-step methods of the Runge-Kutta type are

conceptually simple, easy to code, self-starting and numer-

ically stable for a large class of problems. On the other
hand, they are inefficient; because of their one-step

nature, they do not make full use of the available informa-
tion, and their numerical stability does not extend to their

parallel mode. It seems plausible that more accuracy can be
obtained if the value of Yn+1 is made to depend not only on

Yn but also, say, on Yn-1, Yn-21 ... and fn-,' fn-2.
For this reason multistep methods have become very popular.

For high accuracy they usually require less work than
one-step methods. Thus, the desire to obtain parallel

schemes for such methods is reasonable.

A standard, fourth-order, Adams-Moulton serial
predictor corrector (SPC) is:

yP = yc + h/24(55fc -5 9 fc + 3 7 fc - 9fc) (SPC)1+ i i i-I i-2 i-3

y = yc + h/24(9fp + 19fc - 5 fc + fci+1 i i+1 i i-I i -2

The computation scheme (called PECE) of one PC step to
calculate yi+1 is:

1. Use the predictor equation to calculate an initial

approximation to Yi+1- Set i = 0.

2. Evaluate the derivative function fP
• i+I"

3. Use the corrector equation to calculate a better
approximation to Yi+1"

4. Evaluate the derivative function fc
i+1

- 69 -

5. Check the termination rule. If it is not time to stop,

increment i, set Yi+l = yC and return to 1.
i+1

Let Tf = total time taken by function evaluation done for

one step of PC.

TPCE = time taken to compute predictor-corrector
equation for a single equation.

Then the time taken by one step of SPC is

T, = 2 (nTcE + Tf).

Miranker and Liniger (1967) developed formulas for the
PC method in which the corrector does not depend serially on

the predictor, and the corrector calculations can be per-
formed simultaneously. This Parallel Predictor-Corrector

(PPC) operates in a PECE mode, and the calculation advances
s steps at a time. There are 2s processors and each proces-

sor performs either a predictor or a corrector calculation.
This scheme is shown in Figure 18. A fourth order PPC is

given by:

yP = yc + h/3(8fP - 5fc + 4fc _ fc) (PPC4)1+ i- 1i i-1 i-2 i-3

y? = yC + h/24(9f? + 19f c - 5 fc + fc)

i i-i i-I i-2 i-3

Thus the parallel time for a single step of (PPC4) is given

by

TppC nT E + Tf + 3nT + 2T

=nTPC DC

where

- 70 -

i+1

Compute Update
Predictor State

Derivatives Variables

Compute Update
Corrector State

Derivatives Variables

i-Ii

Figure 18 - Parallel PC Scheme

TpCE = Tf as defined before and

TDC = time taken for data communication

T S = time taken for synchronization.

Generally, the higher accuracy and fewer function evalua-
tions of PC methods (as compared to RK methods) are obtained

at the cost of increased complexity and, sometimes, numeri-
cal instability. The parallel RK methods given by Miranker
and Liniger (1967) do not inherit the stability of their

- 71 -

serial counterparts. On the other hand, PPC methods in
Micanker and Liniger, as described above, are as stable as
their serial formulas. This is proved by Katz et.al. 19 .

Block-Implicit Methods

Sequential block implicit methods as described by
Andria et. al. 2 0 and Shampine and Watts 21 produce more
than one approximation of y at each step of integration.

Shampine and Watts and Rosser 22 discuss block implicit
methods for RK and PC type schemes. A two-point, fourth-

order PC given by Shampine and Watts is:

19N. Katz, M. A. Franklin and A. Sen. "Optimally Stable
Parallel Predictors for Adams-Moulton Correctors". Computing
and Mathematics with Applications, Vol. 3, (1977), pp.
217-233.

2 0F. D. Andria, G. D. Byrne and D. R. Hill. "Natural

Spline Block Implicit Methods". BIT, Vol. 13 (1973), pp.
131-144.

21L. F. Shampine and H. A. Watts. "Block Implicit One Step

Methods". Mathematical Computation, Vol. 23 (1964) pp. 731-
740.

2 2j. Rosser. "A Runge-Kutta for All Seasons". SIAM Review,

Vol. 9 (July. 1967), pp. 417-452.

- 72 -

Y?+, = 1/3(yc + yC + yc) + h/6(3f'_ - 4fc +13fc)
yP = 2/(y i- 1 i-2 i- i

y? -/3(yc + yC + yC) + h/12(29fc _72fc +79fc)
1+2 i-2 i- 1 i-2 i- I 1

yc+1 = yc + h/12(5fc + 8fp - fP) (BPC)
i i i+1 i+2

yC = yc + h/3(fc + 4fP + fP
i+2 1 1 i+1 i+2

Worland 2 3 describes the natural way to parallelize
(BPC) using the number of procesors = number of block points

by the schemes shown in Figure 19. The parallel time for

one Block calculation given by Franklin 2 4 is:

TBPC = (2nTPCE + 2Tf + 6nTDC + 4Ts)/2

Franklin also gives a performance comparison of (PPC) and

parallel (BPC) methods in case of two procesors.

23p. B. Worland. "Parallel Methods for the Numerical

Solution of Ordinary Differential Equations". IEEE

Transactions on Computing", Vol. C-25 (October, 1976), pp.
1045-1048.

2 4 M. A. Franklin. "Parallel Solution of Ordinary

Differential Equations". IEEE Transactions on Computing,

Vol. C-27 No. 5 (May, 1978).

- 73 -

p p c c
Processor 1 Yi+1 fi+1 Yi+1 fi+1

p p c c
Processor 2 Yi+2 fi+2 Yi+2 fi+2

Figure 19 - Parallel Scheme for BPC

Results

For implementation, we used the parallel predictor-

corrector method in conjunction with the techniques
described in Section 3. For comparison, we also included
the results of the Runge-Kutta solutions.

The schedules for the flight simulation problem discus-
sed in Section 3 were programmed using HEP FORTRAN and were

executed on the HEP parallel computer. The computational
results are shown in Table 5. The sequential times Ti and

the parallel times Tp with p processors are given in terms
of seconds. For comparison, the times for the Runge-Kutta
method described in Section 3 are also included.

- 74 -

PROGRAM P T I Tp Sp Ep

RK 8 28.18 4.87 5.78 72.3%

PC 8 21.59 3.33 6.48 81%

TABLE 5 - Speed-up & Efficiency: Predictor-Corrector

and Runge-Kutta Methods

The four-processor schedule was run in combination with

the parallel predictor-corrector formula given by (PPC).

The program created eight instruction streams in parallel,

four for predictor and four for corrector iteration. The

achieved speed-up and efficiency in this case, as compared

to the serial program, is shown in Table 5. Since the

Serial PC methods are expected to be more efficient than

Serial RK methods, the difference in speed-up of their

parallel mode is also to be expected. On the other hand,

the data communication and synchronization in parallel

predictor-corrector is more than the method using the RK

formula. These calculations are done in the following

analysis of the loss of the efficiencies in both programs.

Let

A = number of cycles required by actual computation,

B = number of cycles required by the best schedule,

C = number of cycles required by synchronization.

For the eight-processor scheme with the RK method, the

values of A, B, C are:

A = 1384/8 = 173 cycles

B = 192 cycles = 10.9% of A

C = (78 + 2)/8 = 19.5 average

and C = 23 for worst case = 11.9% of B

- 75 -

The total number of cycles is then given by

Cycles = A + (B - A) + C
= 173 + 19 + 23 = 215

The predicted solution time is given by

PST = Cycles x 28,000 x .8 x 10-6 = 4.816 seconds

where the actual solution time given by Table 5 is 4.87

seconds.

For the four-processor PC method, the values of A, B,
and C are:

A = 1384/4 = 346

B = 363 = 4.9% of A
C = (86 x 2)/4 + 50/8 = 55.5 averaqe

and C = 58 in worst case = 15.9% of B.

This gives the total number of cycles required by the
program

Cycles = A + (B - A) + C
= 356 + 17 + 58 = 421 cycles

This gives the predicted efficiency for the PC method

PE = 356/421 = 82%

where the actual efficiency given by Table 5 is 81%.

Mathematical Functions

In addition to the reorganization of differential equa-
tions, we have examined the reorganization of two common

functions of a mathematical library. In the case of differ-
ential equations, the reorganization resulted in different

- 76 -

algorithms being employed, whereas in the cases we are about
to discuss the algorithms are identical but the programs are

considerably reorganized.

Shortest Path Problem

Shortest path problems are among the most fundamental

and commonly encountered problems in transportation and com-
munication networks. We included such a problem in this

study for three reasons. First, it is directly applicable
to flight simulation studies as a mathematical utility
function. Second, it is used to schedule algorithms for
generating MIMD programs that solve ordinary differential

equations. Finally, the techniques used to derive parallel-
ism clearly show the limitations of automatic detection of
parallelism. We elaborate this third point in Section 5.

The shortest path problem we examined was the all-to-
all program: given n nodes (points, vertices, etc.) and
given a distance (cost) between each ordered pair of points,
determine the minimum distance (or cost) and path between

all pairs of nodes. The distance or cost function does not
require the distance from i to j to be the same as the
distance from j to i. Further, the triangle inequality is
not required to be satisfied. Finally, the distance values
may be negative so long as there are no negative cycles.
Such a problem could well be stated as: given a number of

locations (latitude, longitude and altitude) and given the
fuel consumption of an aircraft between all adjacent pairs
of points, what is the minimum fuel consumption between some
given point and any other point?

- 77 -

The literature contains well over 200 papers on short-

est path algorithms2 5 . We chose Floyd's algorithm 2 6,

which is very general and provides the minimum path as well

as the cost of that path. The nodes of the graph are

represented by the integers 1, 2,..., n and the path length

(cost) is represented by an n-by-n matrix W where Wi, j is

the distance from node i to node j. Node j must be adjacent

to i (otherwise Wi,j has the value -). The sequential

algorithm is shown in Figure 20. For the algorithm to

produce the paths as well as the shortest distance, we rieed

a second n-by-n matrix Z (often referred to as the optimal-
policy matrix) where Zi ,j is initiated to j if W i ,j -

and zero otherwise. During execution of the innermost loop,

if it is found that Wj,i + Wi,k is less than Wj,k then

(in addition to replacing Wj,k) the value of Aj,k is

replaced with the current value of Zj, i . Upon completion

of execution, the shortest path from vertex a to vertex b is

determined by the vertex sequence:

VI = Za,,b

V 2 = ZV,b

V3 = ZV b

b= ZVb

25N. Deo and C. Y. Pang. Shortest Path Algorithms:

Taxonomy and Annotation. Technical Report No. CS-80-057,
Computer Science Department, Washington State University,
Pullman, WA (March, 1980).

26 R. W. Floyd. "Algorithm 97: Shortest Path".

Communications of the ACM, Vol. 5 (1962), p. 345.

- 78 -

PROGRAM MINPATH

READ N,W

FOR I = 1 TO N DO

FOR J = 1 TO N DO

FOR K = 1 TO N DO

IF Wj, i + Wi,k < Wj,k

THEN

Wj,k <- Wj, i + Wi, k

WRITE W

Figure 20 - Minimum Path Algorithm

To determine a parallel version of this algorithm, we
define the code in the most-interior loop to be a task and
denote it as Tijk. The algorithm requires that the execu-
tion of Tij k be complete before starting execution of Tuvw
(denoted by Tijk <" Tuvw) if ijk precedes uvw in the
natural lexical order. We now determine the maximally
parallel task system equivalent to the task system of the

sequential program oy examining the range and domain of the
tasks Tijk. We denote the range (memory locations that are
written into by Tijk) by Rijk and the domain (memory cells
read by Tijk) by Dijk -

Note that

Dij k = Wj,k, Wj,i, Wik I

-79 -

For determining the range, note that the problem requires

that there be no negative weight cycles (if this were the

case there would be no minimum path for any nodes within the

negative cycle). Thus, if i = j then

Wj,k - Wi,j + Wi,k

and if i = k then

Wj,k ! Wj,i + Wi,k

Thus

Rijk Wj 'kt if i f j and i # k

lO otherwise

From the above range and domain we observe that given

distinct T, T' where

T, T' E Si = tTijkl 1<j<n, 1<k<n.

then

D T R = 0T T'

R T D = 0T T

and

R = 0
T T'

- 80 -

Consequently, for each value of i, all tasks in Si may be

executed in parallel. Thus:

PROGRAM PARPATH

for i <- 1 to n do

for all 1<j<n and 1<k<n
do concurrently

S<- W + Wik
if S iwji then

Wij <- S

is a correct program that produces the same results as the
sequential program MINPATH. The parallel version can use n2

processors resulting in a speed-up on n2 . Since n2 proces-
sors may be larger than the number available in typical
sy8-tems, we programmed this parallel algorithm for use of K
processors where K is in the range of 1 to n. This program
is shown in Figures 21 and 22.

The memory limitations of the prototype HEP limited us
to a matrix size of 40 x 40. We ran randomly generated test

cases for this size using from 1 to 14 processes. The
results are shown in Table 6. The agreement between actual
and predicted efficiency is good. When the number of
processes (P) is a divisor of the dimension (N) of the
matrix, the efficiencies are excellent.

Linear Equation Solver

Solving a set of linear equations is a problem of

central importance. Nearly every mathematical library
contains programs for its solution. One of the most popular

- 81 -

PROGRAM PARPATH

READ N,W

$K <- 0

CREATE STREAM 1 (1)
CREATE STREAM 2 (2)
CREATE STREAM 3 (3)
CREATE STREAM 4 (4)
CREATE STREAM 5 (5)
CREATE STREAM 6 (6)
CREATE STREAM 7 (7)
CALL STREAM 8 (8)
WRITE W

Figure 21 - Main Program for Parallel Path
Using Eight Processes

PROCEDURE STREAM i (L)

FOR I = 1 TO N DO

FOR J = L TO N STEP 8 DO

FOR K = 1 TO N DO

IF Wj,i + Wi,k < Wj,k

THEN

Wjk <- Wj, i + Wi, k

$K <- $K + I
WAIT UNTIL $K = 8 * I

Figure 22 - Subroutine for Parallel Path

- 82-

Efficiency

N p Solution Time Achieved Predicted

40 1 1.3102

40 2 .65408 1.0 1.0

40 3 .45176 .966 .952

40 4 .32808 .998 1.0

40 5 .26258 .997 1.0

40 6 .22749 .959 .952

40 7 .19565 .956 .952

40 8 .16524 .99 1.0

40 9 .18217 .898 .889

40 10 .16573 .988 1.0

40 11 .18099 .905 .909

40 12 .19492 .84 .83

40 13 .21017 .779 .769

40 14 .17582 .931 .952

TABLE 6 -Performance of Parallel Path Algorithm

-83-

algorithms is LU decomposition using Gaussian elimination
with some form of pivoting. We address only partial
pivoting. Details of this algorithm can be found in any
standard text on numerical analysis, such as Introduction to
Numerical Analysis 2 7 . Figure 23 shows a serial program for
LU decomposition. Our method of reorganizing is to unroll

the DO loops, apply the techniques of Section 3, schedule
the resulting parallel system, and finally write a number of

subroutines, employing DO loops whose parallel execution is
equivalent to the original program.

The tasks we have selected are indicated in Figure 23.
They consist of the code segment that works on a particular
column j for a particular value of k. We denote those tasks
by

{J = {T3 1 < K < j (n, K < n - 1 1

The precedence constraints imposed by the sequential program

are

[(T, Tl)m j<l or k<m].

Thus, C = (J, <') is the task system that represents the
sequential program. The range and domain of these tasks
are:

R(TJ) = {A(i,j) k<i~n
k

D(TI) = {A(i,j) k~i~n] U [A(i,k) I k~i~n
k

27 F. B. Hildebrand. (New York: McGraw Hill, 1974).

- 84 -

Program LUDECOMP (A(n,n)).

For k <- 1 to n-1 do

Find j such that

IA(j,k)l =f max jjA(k,k) I,...,IA(n,k)))

PIV(k) <- j [pivot row] k

A(PIV(k),k) <-> A(k,k) k

For i <- k+1 to n do

A(i,k) <- A(i,k)/A(k,k) [elements of L]

For j <- k+1 to n do

A(PIV(k),j) <-> A(k,j)I

For i <- k+1 to n do T j>k

A(i,j) <- A(i,j) - A(i,k)*A(k,j)

Figure 23 - Program for LU Decomposition

- 85 -

From this we can observe that, for example,

{k+1 Tk+2 T n
{Tk Tk ,..., k

are all mutually noninterfering tasks and could be executed

in parallel. More specifically, we observe that C'

(T,<'), where <- is the transitive closure on the

relation

X = { (T , TI) k<j.n } U { (T~k T I) k<jSn I

is a maximally parallel system equivalent to C. This system

is illustrated in Figure 24.

Given the task system C' we now determine the execution

time of the tasks and from that determine a schedule. We

assume that one multiply and one subtract, or one multiply

and one compare, constitutes a time step. Thus, neglecting
k

any overhead for loop control, the execution time W(Tj) for

each of the tasks is given by:

WI(T) n+ 1-k if k=j

W(tn-k k<j

Treating the task system C' together with W(Tk) as a

weighted graph we observe that the longest path traverses

the nodes :

1 2 2 3 3 n-1 n
T1 , TI, T2 , T 2 , T3, ... , n-1' n-1

We denote this path as S1 and the length of the path as
L(SI):

n-i
L(SI) = n+1 + 2 Z j = n2 -

j=2

- 86 -

Tj Tn.T....T

3n

n-1

figure 24 -Maximally Parallel Task System Equivalent to C

- 87 -

Since the problem cannot be solved in a time shorter than

this path length, we developed a schedule where the tasks

constituting S, are assigned to processor 1 and the remain-
ing tasks are assigned to [n/21 - 1 additional processors.

Processor 2 executes the tasks

3 4 4 5 5 n
T1 , TI, T2 , T 2 , T3 , ... , Tn- 2

More generally, processor j executes the tasks

2j-1 2j 2j 2j+1 n
TI , TI , T2 , T2 ., Tn-2(j-l)

We denote this as Sj. Note that this is not a path through

the graph. For the case where n is even, this schedule is
illustrated in Figure 25. Since this schedule has length

n2 - 1, the length of the longest path, then this schedule
is optiiaai for n/2 processors. Using this schedule we note

that:

V lim n3/3 + 0(n 2) 2

n-> Sp/P = n-> - (n2-1) n/2 3

and this efficiency is achieved to within 2% for relatively
small n (n > 50).

These schedules were programmed Using HEP FORTRAN, and

were run on the HEP parallel computer. Although the program
solved a set of linear equations, we recorded timing for

only the LU decomposition so that it could be compared with
the predicted solution times. Table 7 gives the actual and

predicted efficiencies for the number of equations ranging
from 10 to 35 and the number of parallel instruction streams

ranging from 2 to 8.

- 88 -

c r
04'

E-4 EA

E--4

E-4 to
C CN

E- _ -1 c _ CN E

E-4 0

C(N

CN(I
E-4 E;E--L

m N

C

NC

040 04 4

-89 -

no. of number of processors
equa-
tions 2 3 4 5 6 7 8

A .833 .719 .642 .633
10

P .852 .739 .678 .685

A .888 .794 .740 .651 .618 .625 .581
15

P .900 .815 .766 .679 .652 .681 .633

A .921 .843 .774 .758 .670 .623 .605
20

P .931 .863 .798 .789 .703 .656 .640

A .934 .878 .830 .763 .755 .692 .642
25

P .944 .896 .855 .739 .788 .726 .675

A .942 .892 .844 .818 .757 .744 .710
30

P .949 .911 .863 .843 .783 .777 .745

A .948 .901 .862 .819 .790 .747 .741
35

P .956 .918 .880 .843 .827 .779 .769

A = Actual efficiency.

P = Predicted efficiency.

Table 7 - Efficiency of LU Decomposition

- 90 -

SECTION 5: CONCLUSIONS

In this study we have examined programs that are all in

support of flight simulation, but which can also be categor-

ized by the types of mathematical functions or services that

they supply. Categorized in this manner they are:

(1) numerical approximation of elementary functions,

(2) solution of linear algebraic equations,

(3) solution of shortest path problems on graphs, and

(4) solution of ordinary differential equations.

For problems in the first category, we examined the

program at an arithmetic instruction level and produced

parallel code based on this examination. These techniques

produced speed-ups in the range of two to three. Since
elementary function approximation involves small amounts of

computation, these very modest speed-ups are perhaps to be
expected. In producing parallel code for these functions,

we were guided by the formal work in the area of polynomial

evaluation. We do not foresee any automated approach to

producing a library of elementary functions for a particular

MIMD computer, but this does not adversely affect the

potential of MIMD computing. Historically, elementary func-
tion libraries have been coded in machine language and high-

ly tailored for the target machine.

To solve linear algebraic equations, we unrolled the DO

loops, represented the computation as a task system, and

from this produced a number of DO loops that could be exe-
cuted in parallel. As we mentioned in Section 2, automatic

detection of parallelism within nested DO loops is receiving
considerable research interest. We believe that if future

Air Force simulation requirements include flexible body

representations (generally requiring solution of linear

algebraic equations), either the algorithms developed here
will be of benefit or automatic recognizers of parallelism

within nested DO loops will be available. The speed-up

- 91 -

j

available in this problem type is bounded only by the size
of the problem. For example, given a set of 100 linear

equations, our algorithm solves them approximately 35 times
faster than a sequential equivalent, and with very good
efficiency.

Producing a parallel version of the shortest path pro-
gram involved unrolling the DO loops and treating the
resulting code as a task system. To determine the preced-
ence relations, however, we used information from both the
code of the program and knowledge of the input data sets for
which this program was correct. Thus it is difficult to see
how automatic detection of parallelism within DO loops could
have produced the same parallels we did. But this should

not detract from the benefits of MIMD computing. In most
flight simulation programs, minimum and maximum path algor-
ithms are usually utility routines; their status as library
function should be adequate.As was the case for the linear
equations, parallelism and speed-up is bounded only by the
size of the problem. For example, given a shorest or long-
est path problem involving 100 points, a speed-up of 100
over an equivalent sequential program is achievable with

efficiencies near 100%.

For solving ordinary differential equations, a variety
of techniques were investigated. Those described in Section
3 seemed most successful. Two distinct flight simulation
programs were examined using these techniques, the ground-

launched missile and the aerodynamics portion of the A-10
flight simulation. The A-10 aerodynamics is approximately

twice as much code as the missile simulation (2803 machine
instructions versus 1384) and presumably represents the
approximate fidelity of simulations currently used for
training purposes. On these assumptions we conclude that a
MIMD computer of the power of HEP could be used in Air Force
flight simulation projects in two ways:

(1) as a multiprogramming computer capable of running

several concurrent simulations of the fidelity of
the A-10 simulation, or

- 92 -

ADAb 56 ENELCOR INC DENVER CO 7/ /2
MULTIPLE;XNSTRUC TION, MULTIPLE-DATA PATH COMPUTERS: PARALLEL PR--ETC WI
AU Al R1 E LORD, S KUMAR , A SCHMIDT

F33 5-79-C- 0009 -E

UNCLASSIFIED AFHRL-TR-80-64 NL22 flfllfl9lfl

(2) as a computer capable of running one or two con-
current flight simulations of significantly more
fidelity than the current A-10 programs.

Greater fidelity is possible not only in the aerodynamic
section but also in computing visual cues for the trainee.

Should an MIMD computer of significantly less power
than HEP be employed for flight simulation, our study
indicates that there is adequate parallelism within these

types of problems that lesser computing power would be
adequate for single simulation programs.

- 93 -

REFERENCES

Andria, F. D., G. D. Byrne and D. R. Hill "Natural Spline
Block Implicit Methods". BIT, Vol. 13 (1973), pp. 131-144.

Baer, J. L. and D. P. Bovet "Compilation of Arithmetic
Expressions for Parallel Computation". Information Process-

ing 68, Amsterdam: North Holland Publishing Company, 1969.

Coffman, Edward G. Jr. and P. J. Denning. Operating Systems
Theory. Englewood Cliffs, NJ: Prentice Hall, 1973.

Denning, P. J. "Third Generation Computer Systems".

Computing Surveys, Vol. 3 No. 4 (1971), pp. 1975-216.

Deo, N. and C. Y. Pang. Shortest Path Algorithms:
Taxonomyand Annotation. Technical Report No. CS-80-057,

Computer Science Department, Washington State University,

Pullman, WA (March, 1980).

Dijkstra, E. W. "Cooperating Sequential Processes". Program-

ming Languages, F. Genuys, Ed. New York: Academic Press,
1968) pp. 43-112.

Dorn, W. S. "Generalization of Horner's Rule for Polynomial

Evaluation". IBM Journal, April 1962, pp. 239-245.

Floyd, R. W. "Algorithm 97: Shortest Path". Communications
of the ACM, Vol. 5 (1962), p. 345.

Flynn, M. J. "Very High Speed Computing Systems". Proceed-

ings IEEE, Vol. 54 (1966), pp. 1901-1909.

Franklin, M.A. "Parallel Solution of Ordinary Differential
Equations". IEEE Transactions on Computing, Vol C-27 No. 5

(May, 1978).

-95 - PREGI ZWQ PALAA*K-4IOT FIU

~L

Hart, J. F. et. al. Computer Approximations. New York:
Wiley & Sons, Inc., 1968.

Hildebrand, F. B., Introduction to Numerical Analysis. New

York: McGraw Hill, 1974.

Katz, N., M. A. Franklin and A. Sen. "Optimally Stable
Parallel Predictors for Adams-Moulton Correctors".

Computing and Mathematics with Applications, Vol. 3 (1977),
pp. 217-233.

Kohler, W. H. "Preliminary Evaluation of the Critical Path

Method for Scheduling Tasks on a Multiprocessor System".
IEEE Transactions on Computing, Vol. C24 No. 12 (December

1975), pp. 1235-1238.

Kopal, Z. Numerical Analysis with Emphasis on The Applica-

tion of Numerical Techniques to Problems of Infinitesimal

Calculus in Single Variable. New York: Wiley and Sons, Inc.

(1955)

Kuck, David J. "Multioperation Machine Computational

Complexity". Complexity of Sequential and Parallel Numerical
Algorithms, J. F. Traub, Ed. New York: Academic Press (1973)

pp. 17-48.

Lord, R. W. Scheduling Recurrence Equations for Solution on
MIMD Type Computers. PhD Dissertation, Washington State

University, 1976.

Miranker, N. L. and W. M. Liniger. "Parallel Methods for the
Numerical Integration of Ordinary Differential Equations".

Mathematical Computation, Vol. 21 (1967), pp. 303-320.

Munro, Ian. "Optimal Algorithms for Parallel Polynomial
Evaluation". Journal of Computer and System Sciences, 1973,

pp. 189-198.

Nievergelt, J. "Parallel Methods for Integrating Ordinary
Differential Equations". Communications of the ACM, Vol. 7

No. 12 (December 1964), pp. 731-733.

- 96 -

Rosser, J. "A Runge-Kutta for All Seasons". SIAM Review,

Vol. 9 (July, 1967), pp. 417-452.

Shampine, L. F. and H. A. Watts. "Block Implicit One Step

Methods". Mathematical Computation, Vol. 23 (1964), pp.

731-740.

Strauss, J. C., et. al. "Continuous System Simulation

Language". Simulation, Vol. 6 No. 12, (December 1967).

Ullman, J. D. "Polynomial Complete Scheduling Problems".

Operating Systems Review, Vol. 7 No. 4 (1973), pp. 96-101.

Winograd, F. "On The Number of Multiplications Required to

Compute Certain Functions". Proceedings National Academy of

Science USA, Vol. 58 (1967), pp. 1840-1842.

Worland, P. B. "Parallel Methods for The Numerical Solution

of Ordinary Differential Equations". IEEE Transactions on
Computing. Vol. C-25 (October, 1976), pp. 1045-1048.

- 97 -

Unclassified

SECURIY CLASSIFICATION OF THIS PAGE ("one DaeBntered),

AFHRLTB:8Q64 s

4. TITLE (and Suabti tle) 4_YX ,VfT 94OO11E

_4~ULTIPLEINSTRUCTION, %LTIPLE-p _PJATH

COMPUTER:ARLE CESNIM CTO
FLIGHITSIMIJEATION SOFTWARE, qW TNME

1. AwIt"O -- --- S. CONTRACT OR GRANT NUMBER(*)

Swr/r F33615-79-C-0009
RodnleyA. hmidt

9PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Denelcor. Inc. AREA & WORK UNIT NUMBERS

S 3115 East 4th Avenue 625
A Denver, Colorado 80205 / 613O

11. CONTROLLING OFFICE NAME AND ADDRESS -12. RESOT DATE

HQ Air Force Human Resources Laboratory (AFSC)Q AugWs 1981
Brooks Air Force Base, Texas 78235 IS. NUMBER OF PAGES

m l
14. MONITORING AGENCY NAME & ADORESS'1 different froms Controlins Office) IS. SECURITY CLASS. (of this report)

Operations Training Division Unclassified
Air Force Human Resources Laboratory . J /I
Williams Air Force Base, Arizona 85224 154-. -- ~ S. DECL ASSI FIC ATION/DOWN GRADING

IS. DHSTRIUUTION STATEMAENT (olthi Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Stock 20, it different from Repore)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse aide It necessary and Identify by block numnber)

computer architecture mathematical modeling
computer programming multiple-instruction multiple-data path (MIMD) computers
evaluation of polynomials parallelism
flight simulation tree structures
flight training simulators

20. !jSTRACT (Continue on reverse e#do It nec~eesar and identilt' by. block numsber)

The purpose of this study was to evaluate the parallel processing impact of MIMD (Multiple-Instruction Multiple-
Data Path) computers on Flight Simulation Software. Basic mathematical functions and arithmetic expressions from
typical Flight Simulation Software were selected and run on a MIMD computer to evaluate the improvement in
execution time that results from the parallel architecture of this type of computer. Recommendations as to the types of
tasks which are optimally suitable for this computer architecture are made, together with the improvement in
execution speed to be expected.

DD ~'JORS1 1473 EDITION OF I NOV 65 IS OBSOLETE Unclasified

SECURITY CLASSIFICATION OF THIS PAGE (When DIIN .M epred

SECURITY CLASIFICATION OF THIS PA@EI(Whi Date EnteamO

SEtCUMITY CLASSIFICATION OF 'P"- PAGILfWhan Date IuBtM

